• 论文 • 上一篇    下一篇

三类新的求解广义最小二乘问题的预处理GAOR方法

王丽   

  1. 西北师范大学数学与统计学院, 兰州 730070
  • 收稿日期:2019-06-20 出版日期:2020-12-15 发布日期:2020-12-15
  • 基金资助:

    国家自然科学基金(11861059),西北师范大学计算数学创新团队(NWNU-LKQN-17-5)资助.

王丽. 三类新的求解广义最小二乘问题的预处理GAOR方法[J]. 数值计算与计算机应用, 2020, 41(4): 282-296.

Wang Li. THREE NEW PRECONDITIONED GENERALIZED AOR METHODS FOR SLOVING GENERALIZED LEAST-SQUARES PROBLEMS[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(4): 282-296.

THREE NEW PRECONDITIONED GENERALIZED AOR METHODS FOR SLOVING GENERALIZED LEAST-SQUARES PROBLEMS

Wang Li   

  1. College of Mathematics and Statistics, Northwest Normal University, LanZhou 730070, China
  • Received:2019-06-20 Online:2020-12-15 Published:2020-12-15
本文提出了用以加速求解广义最小二乘问题的2×2块线性系统的GAOR方法的三类新的预处理子,研究了新预处理GAOR方法的比较定理.所得的比较结果表明当原GAOR方法收敛时,我们提出的新预处理GAOR迭代方法的收敛速度优于原GAOR.最后,给出的数值算例也很好的验证了新预处理方法的有效性.
In this paper, we propose three kinds of new preconditioners of the GAOR method, which for accelerated solving a class of block 2×2 linear systems arising from the generalized leastsquares problems. The comparison theorems of the new preconditioned GAOR methods are studied. Comparison results indicate that the convergence rates of the new preconditioned GAOR iterative methods are better than those of the original GAOR methods whenever the original GAOR method is convergent. Finally, a numerical example is given to demonstrate the effectiveness of the new preconditioned GAOR methods.

MR(2010)主题分类: 

()
[1] Hadjidimos A. Accelerated overrelaxation method[J]. Math. Comput., 1978, 32:149-157.

[2] Yuan J Y, Jin X Q. Convergence of the generalized AOR method[J]. Appl. Math. Comput., 1999, 99:35-46.

[3] Yuan J Y. Numerical methods for generalized least squares problem[J]. J. Comput. Appl. Math., 1996, 66:571-584.

[4] Gunawardena A, Jain S, Snyder L. Modified iterative methods for consistent linear systems[J]. Linear. Algebra. Appl., 1991, 154/156:123-143.

[5] Li Y T, Li C X, Wu S L. Improvements of preconditioned AOR iterative methods for L-matrices[J]. J. Comput. Appl. Math., 2007, 206:656-665.

[6] Milaszewicz J P. Improving Jacobi and Gauss-Seidel iterations[J]. Lineara. Algebra. Appl., 1987, 93:161-170.

[7] Varga R S. Matrix Iterative Analysis[M]. Springer, Berlin, 2000.

[8] Wang L. On a class of row preconditioners for solving linear systems[J]. Int. J. Comput. Math., 2006, 83:939-949.

[9] Wang L, Song Y Z. Preconditioned AOR iterative method for M-matrices[J]. Int. J. Comput. Math., 2009, 226:114-124.

[10] Darvishi M T, Hessari P. On convergence of the generalized AOR method for linear systems with diagonally dominant coefficient matrices[J]. Appl. Math. Comput., 2006, 176:128-133.

[11] Tian G X, Huang T Z, Cui S Y. Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant matrices[J]. J. Comput. Appl. Math., 2008, 213:240-247.

[12] Miao S X. On preconditioned GAOR methods for weighted linear least squares problems[J]. J. Comput. Anal. Appl., 2015, 18:371-382.

[13] Miao S X, Luo Y H, Wang G B. Two new preconditioned GAOR methods for weighted linear least squares problems[J]. Appl. Math. Comput., 2018, 324:93-104.

[14] Shen H L, Shao X H, Zhang T. Preconditioned iterative methods for solving weighted linear least squares problems[J]. Appl. Math. Mech. -Engl. Ed., 2012, 33(3):375-384.

[15] Wang G B, Du Y L, Tan F P. Comparison results on preconditioned GAOR methods for weighted linear least squares problems[J]. J. Appl. Math., 2012, 9.

[16] Wang G B, Wang T, Tan F P. Some results on preconditioned GAOR methods[J]. Appl. Math. Comput., 2013, 219:5811-5816.

[17] Yun J H. Comparison results on the preconditioned GAOR method for generalized least squares problems[J]. Int. J. Comput. Math., 2012, 89:2094-2105.

[18] Zhou X X, Song Y Z, Wang L, Liu Q S. Preconditioned GAOR methods for solving weighted linear least squares problems[J]. J. Comput. Appl. Math., 2009, 224:242-249.

[19] Huang Z G, Wang L G, Xu Z, Cui J J. Some new preconditioned generalized AOR methods for solving weighted linear least squares problems[J]. Comp. Appl. Math., 2018, 37:415-438.

[20] Huang Z G, Xu Z, Lu Q, Cui J J. Some new preconditioned generalized AOR methods for generalized least-squares problems[J]. Appl. Math. Comput., 2015, 269:87-104.

[21] Berman A, Plemmoms R J. Nonnegative Matrices in the Mathematical Sciences[M]. Philadelphia:SIAM, 1994.
[1] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的三阶数值格式[J]. 数值计算与计算机应用, 2020, 41(3): 201-215.
[2] 关文绘, 曹学年. Riesz回火分数阶平流-扩散方程的隐式中点方法[J]. 数值计算与计算机应用, 2020, 41(1): 42-57.
[3] 陈星玎, 李思雨. 求解PageRank的多步幂法修正的广义二级分裂迭代法[J]. 数值计算与计算机应用, 2018, 39(4): 243-252.
[4] 毛文亭, 张维, 王文强. 一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2018, 39(3): 161-171.
[5] 张维, 王文强. 随机延迟微分方程分裂步单支θ方法的强收敛性[J]. 数值计算与计算机应用, 2018, 39(2): 135-149.
[6] 李琴. Stokes方程的一种预处理方法[J]. 数值计算与计算机应用, 2017, 38(2): 81-90.
[7] 张纯, 蔡邢菊, 韩德仁. 求鞍点问题的新的原始-对偶算法[J]. 数值计算与计算机应用, 2016, 37(3): 167-178.
[8] 谢胜兰, 祝鹏. 奇异摄动问题 FEM/LDG 耦合方法的最优阶一致收敛性分析[J]. 数值计算与计算机应用, 2014, 35(3): 189-205.
[9] 王文强, 孙晓莉. 一类随机分数阶微分方程隐式Euler方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2014, 35(2): 153-162.
[10] 张秀梅, 王川龙. 求解大型非对称线性系统的一种新的预处理方法[J]. 数值计算与计算机应用, 2014, 35(1): 28-34.
[11] 张启峰, 张诚坚, 邓定文. 求解非线性时滞双曲型偏微分方程的紧致差分方法及Richardson外推算法[J]. 数值计算与计算机应用, 2013, 34(3): 167-176.
[12] 张荣培, 蔚喜军, 崔霞. 带有间断系数椭圆方程的加权间断Galerkin方法[J]. 数值计算与计算机应用, 2013, 34(3): 177-186.
[13] 王风娟, 王同科. 一维抛物型方程第三边值问题的紧有限体积格式[J]. 数值计算与计算机应用, 2013, 34(1): 59-74.
[14] 王廷春. 求解非线性Schrödinger方程的一个线性化紧致差分格式[J]. 数值计算与计算机应用, 2012, 33(4): 312-320.
[15] 张春敏,  杨月婷. 两种混合共轭梯度法的全局收敛性[J]. 数值计算与计算机应用, 2012, 33(2): 92-98.
阅读次数
全文


摘要