• 论文 • 上一篇    下一篇

带漂移的单侧正规化回火分数阶扩散方程的三阶数值格式

邱泽山, 曹学年   

  1. 湘潭大学 数学与计算科学学院, 湘潭 411105
  • 收稿日期:2019-06-13 出版日期:2020-09-15 发布日期:2020-09-15
  • 通讯作者: 曹学年,cxn@xtu.edu.cn.
  • 基金资助:

    国家自然科学基金(11671343).

邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的三阶数值格式[J]. 数值计算与计算机应用, 2020, 41(3): 201-215.

Qiu Zeshan, Cao Xuenian. THIRD-ORDER NUMERICAL SCHEMES FOR ONE-SIDED NORMALIZED TEMPERED FRACTIONAL DIFFUSION EQUATIONS WITH DRIFT[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(3): 201-215.

THIRD-ORDER NUMERICAL SCHEMES FOR ONE-SIDED NORMALIZED TEMPERED FRACTIONAL DIFFUSION EQUATIONS WITH DRIFT

Qiu Zeshan, Cao Xuenian   

  1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • Received:2019-06-13 Online:2020-09-15 Published:2020-09-15
研究带漂移的单侧正规化回火分数阶扩散方程的数值格式.基于已有的针对单侧正规化回火分数阶扩散方程的三阶拟紧算法,将该算法的思想应用于带漂移的单侧正规化回火分数阶扩散方程的数值模拟,导出数值格式.证明了数值格式的稳定性与收敛性,并通过数值试验验证了数值格式的有效性.
Numerical schemes of the one-sided normalized tempered fractional diffusion equations with drift are studied. Based on the existed third-order quasi-compact algorithm for onesided normalized tempered fractional diffusion equations, the idea of the algorithm is applied to the numerical simulation of the one-sided normalized tempered fractional diffusion equations with drift and the numerical schemes are obtained. The stability and convergence of the numerical schemes are proved, and the effectiveness of the numerical schemes are verified by numerical experiments.

MR(2010)主题分类: 

()
[1] Baeumer B, Meerschaert M M. Tempered stable Lévy motion and transient super-diffusion[J]. Journal of Computational and Applied Mathematics, 2010, 233(10):2438-2448.

[2] Li C, Deng W H. High order schemes for the tempered fractional diffusion equations[J]. Advances in Computational Mathematics, 2016, 42:543-572.

[3] Qu W, Liang Y. Stability and convergence of the Crank-Nicolson scheme for a class of variablecoefficient tempered fractional diffusion equations[J]. Advances in Difference Equations, 2017, 108:1-11.

[4] Çelik C, Duman M. Finite element method for a symmetric tempered fractional diffusion equation[J]. Applied Numerical Mathematics, 2017, 120:270-286.

[5] Yu Y Y, Deng W H, Wu Y J. High-order quasi-compact difference schemes for fractional diffusion equations[J]. Communications in Mathematical Sciences, 2017, 15:1183-1209.

[6] Yu Y Y, Deng W H, Wu Y J, Wu J. Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations[J]. Applied Numerical Mathematics, 2017, 112:126-145.

[7] Zhang Y X, Li Q, Ding H F. High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives:construction and application (I)[J]. Applied Mathematics and Computation, 2018, 329:432-443.

[8] Hu D D, Cao X N. The implicit midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term[J]. Advances in Difference Equations, 2019, 2019(1):66.

[9] Hu D D, Cao X N. A Fourth-Order Compact ADI Scheme for Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation[J]. International Journal of Computer Mathematics, arxiv 1909. 02233.

[10] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学,2019, 41(3):295-307.

[11] Ding H F, Li C P. A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions[J]. Journal of Scientific Computing, 2019:1-29.

[12] Deng W H, Zhang Z J. Numerical schemes of the time tempered fractional Feynman-Kac equation[J]. Computers and Mathematics with Applications, 2017, 73:1063-1076.

[13] Dehghan M, Abbaszadeh M. A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation[J]. Computers and Mathematics with Applications, 2018, 75:2903-2914.

[14] Hanert E, Piret C. A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation[J]. SIAM Journal on Scientific Computing, 2014, 36:A1797-A1812.

[15] Moghaddam B P, Machado J A T, Babaei A. A computationally efficient method for tempered fractional differential equations with application[J]. Computational and Applied Mathematics, 2018, 37:3657-3671.

[16] Sun X R, Zhao F Q, Chen S P. Numerical algorithms for the time-space tempered fractional Fokker-Planck equation[J]. Advances in Differential Equations, 2017, 2017:259.

[17] Sabzikar F, Meerschaert M M, Chen J H. Tempered fractional calculus[J]. Journal of Computational Physics, 2015, 293:14-28.

[18] Zhang H, Liu F, Turner I, Chen S. The numerical simulation of the tempered fractional BlackScholes equation for European double barrier option[J]. Applied Mathematics Modelling, 2016, 40:5819-5834.
[1] 王丽. 三类新的求解广义最小二乘问题的预处理GAOR方法[J]. 数值计算与计算机应用, 2020, 41(4): 282-296.
[2] 刘新龙, 杨晓忠. 时间分数阶四阶扩散方程的显-隐和隐-显差分格式[J]. 数值计算与计算机应用, 2020, 41(3): 216-231.
[3] 王芹, 马召灿, 白石阳, 张林波, 卢本卓, 李鸿亮. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2): 85-104.
[4] 关文绘, 曹学年. Riesz回火分数阶平流-扩散方程的隐式中点方法[J]. 数值计算与计算机应用, 2020, 41(1): 42-57.
[5] 洪旗, 苏帅. 任意四边形网格上扩散问题的一个稳定九点格式[J]. 数值计算与计算机应用, 2019, 40(1): 51-67.
[6] 丛玉豪, 赵欢欢, 张艳. 中立型时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 数值计算与计算机应用, 2018, 39(4): 310-320.
[7] 陈星玎, 李思雨. 求解PageRank的多步幂法修正的广义二级分裂迭代法[J]. 数值计算与计算机应用, 2018, 39(4): 243-252.
[8] 毛文亭, 张维, 王文强. 一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2018, 39(3): 161-171.
[9] 张维, 王文强. 随机延迟微分方程分裂步单支θ方法的强收敛性[J]. 数值计算与计算机应用, 2018, 39(2): 135-149.
[10] 张纯, 蔡邢菊, 韩德仁. 求鞍点问题的新的原始-对偶算法[J]. 数值计算与计算机应用, 2016, 37(3): 167-178.
[11] 刘翠翠, 张瑞平. 基于勒让德多项式逼近的4级4阶隐式Runge-Kutta方法[J]. 数值计算与计算机应用, 2015, 36(1): 22-30.
[12] 谢胜兰, 祝鹏. 奇异摄动问题 FEM/LDG 耦合方法的最优阶一致收敛性分析[J]. 数值计算与计算机应用, 2014, 35(3): 189-205.
[13] 王文强, 孙晓莉. 一类随机分数阶微分方程隐式Euler方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2014, 35(2): 153-162.
[14] 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80.
[15] 张秀梅, 王川龙. 求解大型非对称线性系统的一种新的预处理方法[J]. 数值计算与计算机应用, 2014, 35(1): 28-34.
阅读次数
全文


摘要