• 论文 • 上一篇    下一篇

空穴、H+在SiO2体内输运的数值模拟研究

李培1, 贺朝会1, 郭红霞2, 李永宏1, 张晋新3   

  1. 1 西安交通大学, 西安 710049;
    2 西北核技术研究所, 西安 710024;
    3 西安电子科技大学, 西安 710071
  • 收稿日期:2020-03-27 出版日期:2020-06-15 发布日期:2020-06-15

李培, 贺朝会, 郭红霞, 李永宏, 张晋新. 空穴、H+在SiO2体内输运的数值模拟研究[J]. 数值计算与计算机应用, 2020, 41(2): 151-158.

Li Pei, He Chaohui, Guo Hongxia, Li Yonghong, Zhang Jinxin. NUMERICAL SIMULATION OF HOLE AND H+ TRANSPORTATION AT Si/SiO2 INTERFACE[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(2): 151-158.

NUMERICAL SIMULATION OF HOLE AND H+ TRANSPORTATION AT Si/SiO2 INTERFACE

Li Pei1, He Chaohui1, Guo Hongxia2, Li Yonghong1, Zhang Jinxin3   

  1. 1 Xi'an Jiaotong University, Xi'an 710049, China;
    2 Northwest Institution of Nuclear Technology, Xi'an 710024, China;
    3 Xidian University, Xi'an 710126, China
  • Received:2020-03-27 Online:2020-06-15 Published:2020-06-15
半导体器件的电离辐射效应涉及到材料内部的一系列物理过程,包括空穴对的产生与复合、载流子的输运以及氧化物陷阱电荷和界面态电荷的形成与累积.空穴和H+的输运机制是理解电离辐射效应的关键环节,其中空穴的输运影响着氧化物陷阱正电荷的形成、退火以及H+的释放,从而影响界面态电荷的形成.本文建立Si/SiO2界面的物理模型,借助TCAD数值模拟方法,分析不同剂量率辐照条件下空穴和H+在SiO2体内的输运机制和浓度分布.
The ionizing-radiation effect of semiconductor devices involves a series of physical processes inside the material:including the generation and recombination of holes, carrier transport, the formation and accumulation of oxide trap charges and interface charges. The key to understand ionizing-radiation effect is the transport mechanism of H+ and holes, which the hole transport affects the formation of oxide trap charge, annealing, and the release of H+, thus affecting the formation of interface states charge. In this paper, a physical model of the Si/SiO2 interface was established; TCAD numerical simulation is used to analyze the transport mechanism and concentration distribution of holes and H+ inside the oxide layer irradiated by different dose rate.

MR(2010)主题分类: 

()
[1] Ausman Jr G A, McLean F B. Electron-hole pair creation energy in SiO2[J]. Applied Physics Letters, 1975, 26(4):173-175.

[2] Brown D B, Dozier C M. Electron-hole recombination in irradiated SiO2 from a microdosimetry viewpoint[J]. IEEE Transactions on Nuclear Science, 1981, 28(6):4142-4144.

[3] Rowsey N L, Law M E, Schrimpf R D, et al. A Quantitative Model for ELDRS and H2 Degradation Effects in Irradiated Oxides Based on First Principles Calculations[J]. IEEE Transactions on Nuclear Science, 2011, 58(6):2937-2944.

[4] Fleetwood D M, Winokur P S, Reber Jr R A, et al. Effects of oxide traps, interface traps, and "border traps"on metal-oxide-semiconductor devices[J]. Journal of Applied Physics, 1993, 73(10):5058-5074.

[5] Li P, He C, Guo H, et al. An Investigation of ELDRS in Different SiGe Processes[J]. IEEE Transactions on Nuclear Science, 2017, 64(5):1137-1141.

[6] Griscom D L, Friebele E J. Fundamental radiation-induced defect centers in synthetic fused silicas:Atomic chlorine, delocalized E'centers, and a triplet state[J]. Physical Review B, 1986, 34(11):7524.

[7] Pantelides S T, Lu Z Y, Nicklaw C, et al. The E'center and oxygen vacancies in SiO2[J]. Journal of Non-Crystalline Solids, 2008, 354(2-9):217-223.

[8] Hughes R C. Hole mobility and transport in thin SiO2 films[J]. Applied Physics Letters, 1975, 26(8):436-438.

[9] McLean F B, Ausman Jr G A, Boesch Jr H E, et al. Application of stochastic hopping transport to hole conduction in amorphous SiO2[J]. Journal of Applied Physics, 1976, 47(4):1529-1532.

[10] Hughart D R. Variations in radiation response due to hydrogen:Mechanisms of interface trap buildup and annealing[M]. Vanderbilt University, 2012.

[11] Chen X J, Barnaby H J, Vermeire B, et al. Mechanisms of enhanced radiation-induced degradation due to excess molecular hydrogen in bipolar oxides[J]. IEEE Transactions on Nuclear Science, 2007, 54(6):1913-1919.

[12] Lopez N, Illas F, Pacchioni G. Mechanisms of Proton Formation from Interaction of H2 with E' and Oxygen Vacancy Centers in SiO2:Cluster Model Calculations[J]. The Journal of Physical Chemistry B, 2000, 104(23):5471-5477.

[13] Rashkeev S N, Fleetwood D M, Schrimpf R D, et al. Defect generation by hydrogen at the Si-SiO2 interface[J]. Physical review letters, 2001, 87(16):165506.
No related articles found!
阅读次数
全文


摘要