• 论文 • 上一篇    下一篇

半导体器件电离辐照损伤效应模拟的数值算法及应用

马召灿1, 许竞劼1, 卢本卓1, 李鸿亮2   

  1. 1 LSEC, 中国科学院数学与系统科学研究院计算数学研究所, 国家数学与交叉科学中心, 北京 100190;
    2 四川师范大学数学科学学院, 成都 610066
  • 收稿日期:2020-04-01 出版日期:2020-06-15 发布日期:2020-06-15
  • 通讯作者: 李鸿亮,Email:lihongliang@mtrc.ac.cn;卢本卓,Email:bzlu@lsec.cc.ac.cn.
  • 基金资助:

    科学挑战专题(TZ201603),国家重点研发计划(2016YFB0201304),NSFC(11771435).

马召灿, 许竞劼, 卢本卓, 李鸿亮. 半导体器件电离辐照损伤效应模拟的数值算法及应用[J]. 数值计算与计算机应用, 2020, 41(2): 105-120.

Ma Zhaocan, Xu Jingjie, Lu Benzhuo, Li Hongliang. NUMERICAL ALGORITHM AND APPLICATION IN SIMULATION OF RADIATION DAMAGE EFFECTS ON SEMICONDUCTOR DEVICES[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(2): 105-120.

NUMERICAL ALGORITHM AND APPLICATION IN SIMULATION OF RADIATION DAMAGE EFFECTS ON SEMICONDUCTOR DEVICES

Ma Zhaocan1, Xu Jingjie1, Lu Benzhuo1, Li Hongliang2   

  1. 1 LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190, China;
    2 Department of Mathematics, Sichuan Normal University, Chengdu 610066, China
  • Received:2020-04-01 Online:2020-06-15 Published:2020-06-15
本文研究了半导体器件伽马辐照电离损伤效应定量物理模型系列算法,其中包括有限元空间离散、隐式时间积分以及非线性系统解耦迭代算法.算法有效地处理了电离损伤模型多组分、电-输运-反应多物理耦合以及强刚性等难点.基于三维并行有限元平台(PHG),我们完成了半导体器件电离辐照效应三维并行求解器TIDSim的研制.针对典型场效应晶体管NMOS、双极晶体管GLPNP进行了电离辐照损伤模拟,数值模拟结果与器件辐照实验数据吻合.
In this paper, a series of algorithms for quantitative physical model of ionization damage effects on semiconductor devices are developed, including finite element method, implicit time integration and decoupling iterative algorithms for nonlinear systems. The algorithms are shown to be effective to deal with the model complexities, including multi-physical coupling, nonlinear reaction system and stiff matrix solving. Based on the three-dimensional parallel finite element platform (PHG), these methods have been implemented into our simulation solver, TIDSim, which is designed for simulating ionizing radiation effects on semiconductor devices. Ionization radiation damage simulations of silicon devices were performed for typical field effect transistors NMOS, bipolar transistors GLPNP. The numerical simulation results are in well agreement with the experimental data of device irradiation.

MR(2010)主题分类: 

()
[1] Claeys C, Simoen E.先进半导体材料及器件的辐射效应[M]. 国防工业出版社, 2008.

[2] Oldham T R. Ionizing radiation effects in MOS oxides[M]. World Scientific, 2000.

[3] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P. Th Effects of Hydrogen on the Enhanced Low Dose Rate Sensitivity (ELDRS) of Bipolar Linear Circuits[J]. IEEE T. Nucl. Sci., 2008, 55(6):3169-3173.

[4] Hjalmarson H P, Pease R L, Devine R A B. Calculations of Radiation Dose-Rate Sensitivity of Bipolar Transistors[J]. IEEE T. Nucl. Sci., 2008, 55(6):3009-3015.

[5] Blöchl P E. First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen[J]. Phys. Rev. B, 2000, 62(10):6158-6179.

[6] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T. A Quantitative Model for ELDRS and H2 Degradation Effects in Irradiated Oxides Based on First Principles Calculations[J]. IEEE T. Nucl. Sci., 2011, 58(6):2937-2944.

[7] 黄成梓, 白石阳, 王芹, 马召灿, 张倩茹, 刘田田, 桂升, 卢本卓, 陈旻昕, 李鸿亮. 3Ddevice:半导体器件辐照损伤效应仿真软件[J]. 数值计算与计算机应用, 2020, 41(2):121-142.

[8] Esqueda I S. Modeling of total ionizing dose effects in advanced complementary metal-oxidesemiconductor technologies[M]. Arizona State University, 2011.

[9] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P. Mechanisms of Enhanced Radiation-Induced Degradation Due to Excess Molecular Hydrogen in Bipolar Oxides[J]. IEEE T. Nucl. Sci., 2007, 54(6):1913-1919.

[10] 刘恩科. 半导体物理学[M]. 电子工业出版社, 2011.

[11] Xu J, Ma Z, Li H, Song Y, Zhang L, Lu B. A Multi-Time-Step Finite Element Algorithm for 3-D Simulation of Coupled Drift-Diffusion Reaction Process in Total Ionizing Dose Effect[J]. IEEE Transactions on Semiconductor Manufacturing, 2017, 31(1):183-189.

[12] 王芹, 马召灿, 白石阳, 张林波, 卢本卓, 李鸿亮. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2):85-104..

[13] 刘远, 恩云飞, 李斌, 师谦, 何玉娟. 先进工艺对MOS器件总剂量辐射效应的影响[J]. 半导体技术, 2006, 31(10):738-742.

[14] Claeys C, Simoen E. Radiation effects in advanced semiconductor materials and devices[M], volume 57. Springer Science & Business Media, 2013.

[15] Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N. Response of advanced bipolar processes to ionizing radiation[J]. IEEE T. Nucl. Sci., 1991, 38(6):1342-1351.

[16] Jafari H, Feghhi S, Boorboor S. The effect of interface trapped charge on threshold voltage shift estimation for gamma irradiated MOS device[J]. Radiation Measurements, 2015, 73:69-77.

[17] Ball D R, Schrimpf R D, Barnaby H J. Separation of ionization and displacement damage using gate-controlled lateral PNP bipolar transistors[J]. IEEE Transactions on Nuclear Science, 2002, 49(6):3185-3190.

[18] Schrimpf R, Graves R, Schmidt D, Fleetwood D, Pease R, Combs W, DeLaus M. Hardnessassurance issues for lateral PNP bipolar junction transistors[J]. IEEE Transactions on Nuclear Science, 1995, 42(6):1641-1649.

[19] Nowlin R N, Fleetwood D, Schrimpf R, Pease R, Combs W. Hardness-assurance and testing issues for bipolar/BiCMOS devices[J]. IEEE transactions on nuclear science, 1993, 40(6):1686-1693.

[20] 陆妩, 李小龙, 于新, 王信, 刘默寒, 姚帅, 常耀东. 双极器件ELDRS效应研究进展[J]. 原子核物理评论,2019, 36(4):477-483.
[1] 张文生, 张丽娜. 基于有限元方法的频率域弹性波全波形反演[J]. 数值计算与计算机应用, 2020, 41(4): 315-336.
[2] 谢和虎. 子空间扩展算法及其应用[J]. 数值计算与计算机应用, 2020, 41(3): 169-191.
[3] 王芹, 马召灿, 白石阳, 张林波, 卢本卓, 李鸿亮. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2): 85-104.
[4] 魏莹, 文林, 李豫东, 郭旗. 电离总剂量效应对4T CMOS图像传感器暗电流影响的数值仿真[J]. 数值计算与计算机应用, 2020, 41(2): 143-150.
[5] 黄成梓, 白石阳, 王芹, 马召灿, 张倩茹, 刘田田, 桂升, 卢本卓, 陈旻昕, 李鸿亮. 3Ddevice:半导体器件及其辐照损伤效应仿真软件系统[J]. 数值计算与计算机应用, 2020, 41(2): 121-142.
[6] 李培, 贺朝会, 郭红霞, 李永宏, 张晋新. 空穴、H+在SiO2体内输运的数值模拟研究[J]. 数值计算与计算机应用, 2020, 41(2): 151-158.
[7] 葛志昊, 李婷婷, 王慧芳. 双资产欧式期权定价问题的特征有限元方法[J]. 数值计算与计算机应用, 2020, 41(1): 27-41.
[8] 李瑜, 谢和虎. 基于特征线法的群体平衡系统的数值模拟[J]. 数值计算与计算机应用, 2019, 40(4): 261-278.
[9] 谢和虎, 谢满庭, 张宁. 一种求解半线性问题的快速多重网格法[J]. 数值计算与计算机应用, 2019, 40(2): 143-160.
[10] 邓维山, 徐进. 一种泊松-玻尔兹曼方程稳定算法的高效有限元并行实现[J]. 数值计算与计算机应用, 2018, 39(2): 91-110.
[11] 崔孟雷, 李春光, 庄心善. 全局坐标系下有限元形函数的直接构造方法[J]. 数值计算与计算机应用, 2018, 39(1): 28-36.
[12] 余涛, 张镭. 线性弹性问题的局部正交分解方法[J]. 数值计算与计算机应用, 2018, 39(1): 10-19.
[13] 杨建宏. 定常Navier-Stokes问题低次等阶稳定有限体积元算法研究[J]. 数值计算与计算机应用, 2017, 38(2): 91-104.
[14] 周宇, 李秋齐. 基于降基多尺度有限元的PGD方法及其在含参数椭圆方程中的应用[J]. 数值计算与计算机应用, 2017, 38(2): 105-122.
[15] 李琴. Stokes方程的一种预处理方法[J]. 数值计算与计算机应用, 2017, 38(2): 81-90.
阅读次数
全文


摘要