• 论文 • 上一篇    下一篇

Riesz回火分数阶平流-扩散方程的隐式中点方法

关文绘, 曹学年   

  1. 湘潭大学数学与计算科学学院, 湘潭 411105
  • 收稿日期:2019-05-31 出版日期:2020-03-15 发布日期:2020-03-15
  • 通讯作者: 曹学年,cxn@xtu.edu.cn.

关文绘, 曹学年. Riesz回火分数阶平流-扩散方程的隐式中点方法[J]. 数值计算与计算机应用, 2020, 41(1): 42-57.

Guan Wenhui, Cao Xuenian. THE IMPLICIT MIDPOINT METHOD FOR RIESZ TEMPERED FRACTIONAL ADVECTION-DIFFUSION EQUATION[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(1): 42-57.

THE IMPLICIT MIDPOINT METHOD FOR RIESZ TEMPERED FRACTIONAL ADVECTION-DIFFUSION EQUATION

Guan Wenhui, Cao Xuenian   

  1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • Received:2019-05-31 Online:2020-03-15 Published:2020-03-15
本文针对Riesz回火分数阶平流-扩散方程,采用隐式中点方法离散一阶时间偏导数,用修正的二阶Lubich回火差分算子逼近Riesz空间回火分数阶偏导数,并对平流项采用中心差商进行离散,构造出新的数值方法,获得了数值方法的稳定性和收敛性,该方法的收敛阶在空间和时间方向均达到二阶精度.数值试验验证了数值方法的有效性.
In this paper, an implicit midpoint method is applied to discretize the first order time partial derivative, the modified second-order Lubich tempered difference operator is used to approximate Riesz space tempered fractional partial derivative, and the central difference formula is utilizing to discrete the advection term, a numerical scheme is constructed for solving Riesz tempered fractional advection-diffusion equation. The stability and convergence of the numerical scheme is established, and the convergence order of numerical scheme can reach two order accuracy on temporal and spatial directions respectively. The numerical experiments are performed to confirm the theoretical results and testify the effectiveness of the schemes.

MR(2010)主题分类: 

()
[1] Baeumer B, Meerschaert M M. Tempered stable Levy motion and transient superdiffusion[J].Comput Appl Math, 2010, 233(10):2438-2448.

[2] Boyarchenko S I, Levendorskii S Z. Non-Gaussian merton-Black-Scholes theory[M]. World Scientific, Publishing Co Pte Ltd, 2002, 67:94.

[3] Celik C, Duman M.Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative[J]. Comput Phys, 2012, 231:1743-1750.

[4] Ding H F, Li C P.High-order numerical algorithms for Riesz derivatives via constructing new generating functions[J].Sci Comput.2017, 71:759-784.

[5] Du R L, Yan Y B, Liang Z Q. A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation[J].Comput Phys, 2019, 376:1312-1330.

[6] Ding H F, Li C P. A high-order algorithm for time-Caputo-Tempered partial differential equation with Riesz derivatives in two spatial dimensions[J].Sci Comput, 2019, 80:81-109.

[7] Ding H F.A high order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation[J].Appl Numer Math, 2019, 135:30-46.

[8] Hu D D, Cao X N. The midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term[J].Adv Differ Equ, 2019:66.

[9] Li C, Deng W H.High order schemes for the tempered fractional diffusion equation[J].Adv Comput Math, 2016, 42(3):543-572.

[10] Liao H L, Lyu P, Vong S. Second-order BDF time approximation for Riesz space-fractional diffusion equations[J].Comput Math, 2018, 95(1):144-158.

[11] Mantegna R N, Eugene Stanley H. Stochastic process with ultraslow convergence to a Gaussian:the truncated Levy flight[J].Phys Rev Lett, 1994, 73(22):2946-2949.

[12] Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations[J].Comput Appl Math, 2004, 172:65-77.

[13] Sokolov I M, Chechkin A V, Klafter J.Fractional diffusion equation for a power-law-truncated Levy process[J].Phys A, 2004, 336(3):245-251.

[14] Shen S J, Liu F W, Anh V, Turner I.The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation[J].Appl Math, 2008, 73:850-872.

[15] Schumer R, Meerschaert M M, Baeumer B. Fractional advection-dispersion equations for modeling transport at the Earth surface[J].J Geophys Res, 2009, Doi:10.1029/2008JF001246.

[16] Shen S J, Liu F W, Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation[J].Numer Algor, 2011, 56:383-403.

[17] Sun X R, Zhao F Q, Chen S P.Numerical algorithm for the time-space tempered fractional Fokker-Planck equation[J].Adv Differ Equ, 2017:259.

[18] Wang P D, Huang C M.An implicit midpoint difference schemes for the fractional GinzburgLandau equation[J].Comput Phys, 2016, 312:31-49.

[19] Yu Y Y, Deng W H, Wu Y J.High-order quasi-compact difference schemes for (tempered) fractional diffusion equations[J].Commun Math Sci, 2016, 15:1183-1209.

[20] Yu Y Y, Deng W H, Wu Y J, Wu J. Third oeder difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equation[J]. Appl Numer Math, 2017, 112:126-145.

[21] Zhang X X, Lu M, W.Crawford J, M.Young I. The impact of boundary on the fractional advectiondispersion equation for solute transport in soil:Defining the fractional dispersive flux with the Caputo derivatives[J].Adv Water Resour, 2007, 30:1205-1217.

[22] Zhuang P, Liu F W, Anh V, Turner I.Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term[J].Siam J Numer Anal, 2009, 47(3):1760-1781.

[23] Zhang Y.Moments for tempered fractional advection-diffusion equations[J].Stat Phys, 2010, 139(5):915-939.

[24] Zhang H, Liu F W, Turner I, Chen S. The numerical simulation of the tempered fractional BlackScholes equation for European double barrier option[J]. Appl Math Model, 2016, 40:5819-5834.

[25] Zhang Y X, Li Q, Ding H F.High-order numerical approximation formulas for RiemannLiouville(Riesz)tempered fractional derivatives:construction and application(I)[J]. Comput Appl Math, 2018, 329:432-443.

[26] Zhai S Y, Weng Z F, Feng X L, Yuan J Y.Investigations on several high-order ADI methods for time-space fractional diffusion equation[J]. Numer Algorithms, 2018, Doi:10.1007/s11075-018-0594-z.
[1] 王丽. 三类新的求解广义最小二乘问题的预处理GAOR方法[J]. 数值计算与计算机应用, 2020, 41(4): 282-296.
[2] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的三阶数值格式[J]. 数值计算与计算机应用, 2020, 41(3): 201-215.
[3] 刘新龙, 杨晓忠. 时间分数阶四阶扩散方程的显-隐和隐-显差分格式[J]. 数值计算与计算机应用, 2020, 41(3): 216-231.
[4] 洪旗, 苏帅. 任意四边形网格上扩散问题的一个稳定九点格式[J]. 数值计算与计算机应用, 2019, 40(1): 51-67.
[5] 陈星玎, 李思雨. 求解PageRank的多步幂法修正的广义二级分裂迭代法[J]. 数值计算与计算机应用, 2018, 39(4): 243-252.
[6] 丛玉豪, 赵欢欢, 张艳. 中立型时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 数值计算与计算机应用, 2018, 39(4): 310-320.
[7] 毛文亭, 张维, 王文强. 一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2018, 39(3): 161-171.
[8] 张维, 王文强. 随机延迟微分方程分裂步单支θ方法的强收敛性[J]. 数值计算与计算机应用, 2018, 39(2): 135-149.
[9] 张纯, 蔡邢菊, 韩德仁. 求鞍点问题的新的原始-对偶算法[J]. 数值计算与计算机应用, 2016, 37(3): 167-178.
[10] 刘翠翠, 张瑞平. 基于勒让德多项式逼近的4级4阶隐式Runge-Kutta方法[J]. 数值计算与计算机应用, 2015, 36(1): 22-30.
[11] 谢胜兰, 祝鹏. 奇异摄动问题 FEM/LDG 耦合方法的最优阶一致收敛性分析[J]. 数值计算与计算机应用, 2014, 35(3): 189-205.
[12] 王文强, 孙晓莉. 一类随机分数阶微分方程隐式Euler方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2014, 35(2): 153-162.
[13] 张秀梅, 王川龙. 求解大型非对称线性系统的一种新的预处理方法[J]. 数值计算与计算机应用, 2014, 35(1): 28-34.
[14] 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80.
[15] 张启峰, 张诚坚, 邓定文. 求解非线性时滞双曲型偏微分方程的紧致差分方法及Richardson外推算法[J]. 数值计算与计算机应用, 2013, 34(3): 167-176.
阅读次数
全文


摘要