• 论文 • 上一篇    

一种求解半线性问题的快速多重网格法

谢和虎1,2, 谢满庭3, 张宁1,2   

  1. 1. 国科学院数学与系统科学研究院, 计算数学研究所, 国家数学与交叉科学中心, 科学与工程计算国家重点实验室, 北京 100190;
    2. 中国科学院大学, 数学科学学院, 北京 100049;
    3. 天津大学应用数学中心, 天津 300072
  • 收稿日期:2019-03-18 出版日期:2019-06-15 发布日期:2019-06-13
  • 基金资助:

    国家自然科学基金(91730302,11771434,91330202,11371026,11001259,11031006)资助.

谢和虎, 谢满庭, 张宁. 一种求解半线性问题的快速多重网格法[J]. 数值计算与计算机应用, 2019, 40(2): 143-160.

Xie Hehu, Xie Manting, Zhang Ning. AN EFFICIENT MULTIGRID METHOD FOR SEMILINEAR ELLIPTIC EQUATION[J]. Journal of Numerical Methods and Computer Applications, 2019, 40(2): 143-160.

AN EFFICIENT MULTIGRID METHOD FOR SEMILINEAR ELLIPTIC EQUATION

Xie Hehu1,2, Xie Manting3, Zhang Ning1,2   

  1. 1. LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
  • Received:2019-03-18 Online:2019-06-15 Published:2019-06-13
本文介绍一种求解半线性问题的完全多重网格算法,该算法是基于多重校正算法与线性边值问题的多重网格迭代结合而设计的.多重校正算法将半线性问题的求解转化成线性边值问题的求解加上在一个低维空间上的半线性问题的求解.利用并行计算技术,这里所提出的多重网格算法可以明显地提高求解半线性椭圆问题的效率.更进一步,当非线性项是多项式函数的时候,本文也设计了一种高效的完全多重网格算法,并且通过分析可以知道该算法求解多项式形式的半线性椭圆问题的计算量具有渐近最优的性质.最后用数值实验验证了本文算法的有效性.
A full multigrid method is proposed to solve the semilinear elliptic problem by the finite element method based on the combination of multilevel correction method and multigrid method for the linear elliptic problems. In the proposed method, solving the semilinear problem is decomposed into solutions of the linear elliptic problem by the multigrid method, and the semilinear problem which is defined in a very low dimension space. With the help of parallel computing technique, the overfull efficiency can be improved clearly. Furthermore, when the nonlinear term is a polynomial function, an efficient full multigrid method is designed such that the asymptotically computational work is absolutely optimal. One numerical example is provided to validate the efficiency of the proposed method in this paper.

MR(2010)主题分类: 

()
[1] Adams R A. Sobolev Spaces. Academic Press, New York, 1975.

[2] Bank R E, Dupont T. An optimal order process for solving finite element equations[J]. Math. Comp., 1981, 36:35-51.

[3] Bramble J H. Multigrid Methods. Pitman Research Notes in Mathematics, Vol. 294, John Wiley and Sons, 1993.

[4] Bramble J H, Pasciak J E. New convergence estimates for multigrid algorithms[J]. Math. Comp., 1987, 49:311-329.

[5] Bramble J H, Zhang X. The Analysis of Multigrid Methods. Handbook of Numerical Analysis, 2000, 173-415.

[6] Brandt A, McCormick S, Ruge J. Multigrid methods for differential eigenproblems[J]. SIAM J. Sci. Stat. Comput., 1983, 4(2):244-260.

[7] Brenner S, Scott L. The Mathematical Theory of Finite Element Methods. New York, SpringerVerlag, 1994.

[8] Ciarlet P G. The Finite Element Method for Elliptic Problem. North-holland Amsterdam, 1978.

[9] Hackbusch W. Multi-grid Methods and Applications. Springer-Verlag, Berlin, 1985.

[10] Huang Y, Shi Z, Tang T, Xue W. A multilevel successive iteration method for nonlinear elliptic problem[J]. Math. Comp., 2004, 73:525-539.

[11] Jia S, Xie H, Xie M, Xu F. A full multigrid method for monlinear eigenvalue problems[J]. Sci. China Math., 2016, 59:2037-2048.

[12] 林群, 谢和虎. 有限元Aubin-Nitsche技巧新认识及其应用[J]. 数学的实践与认识, 2011, 41(17):247-258.

[13] Lin Q, Xie H. A multi-level correction scheme for eigenvalue problems[J]. Math. Comp., 2015, 84(291):71-88.

[14] Lin Q, Xie H, Xu F. Multilevel correction adaptive finite element method for semilinear elliptic equation[J]. Appl. Math., 2015, 60(5):527-550.

[15] Scott L, Zhang S. Higher dimensional non-nested multigrid methods[J]. Math. Comp., 1992, 58:457-466.

[16] Toselli A, Widlund O. Domain Decomposition Methods:Algorithm and Theory. Springer-Verlag, Berlin Heidelberg, 2005.

[17] Shaidurov V V. Multigrid Methods for Finite Elements. Kluwer Academic Publics, Netherlands, 1995.

[18] Xie H. A type of multilevel method for the Steklov eigenvalue problem[J]. IMA J. Numer. Anal., 2014, 34:592-608.

[19] Xie H. A multigrid method for eigenvalue problem[J]. J. Comput. Phys., 2014, 274:550-561.

[20] Xie H.非线性特征值问题的多重网格算法. 中国科学:数学, 2015, 45(8):1193-1204.

[21] Xie H, Xie M. A multigrid method for the ground state solution of Bose-Einstein condensates[J]. Commun. Comput. Phys., 2016, 19(3):648-662.

[22] Xu J. Iterative methods by space decomposition and subspace correction[J]. SIAM Review, 1992, 34(4):581-613.

[23] Xu J. Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM J. Numer. Anal., 1996, 33(5):1759-1777.

[24] Xu J. A novel two-grid method for semilinear elliptic equations[J]. SIAM J. Sci. Comput., 1994, 15(1):231-237.
[1] 张文生, 张丽娜. 基于有限元方法的频率域弹性波全波形反演[J]. 数值计算与计算机应用, 2020, 41(4): 315-336.
[2] 谢和虎. 子空间扩展算法及其应用[J]. 数值计算与计算机应用, 2020, 41(3): 169-191.
[3] 王芹, 马召灿, 白石阳, 张林波, 卢本卓, 李鸿亮. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2): 85-104.
[4] 马召灿, 许竞劼, 卢本卓, 李鸿亮. 半导体器件电离辐照损伤效应模拟的数值算法及应用[J]. 数值计算与计算机应用, 2020, 41(2): 105-120.
[5] 黄成梓, 白石阳, 王芹, 马召灿, 张倩茹, 刘田田, 桂升, 卢本卓, 陈旻昕, 李鸿亮. 3Ddevice:半导体器件及其辐照损伤效应仿真软件系统[J]. 数值计算与计算机应用, 2020, 41(2): 121-142.
[6] 葛志昊, 李婷婷, 王慧芳. 双资产欧式期权定价问题的特征有限元方法[J]. 数值计算与计算机应用, 2020, 41(1): 27-41.
[7] 李瑜, 谢和虎. 基于特征线法的群体平衡系统的数值模拟[J]. 数值计算与计算机应用, 2019, 40(4): 261-278.
[8] 邓维山, 徐进. 一种泊松-玻尔兹曼方程稳定算法的高效有限元并行实现[J]. 数值计算与计算机应用, 2018, 39(2): 91-110.
[9] 崔孟雷, 李春光, 庄心善. 全局坐标系下有限元形函数的直接构造方法[J]. 数值计算与计算机应用, 2018, 39(1): 28-36.
[10] 余涛, 张镭. 线性弹性问题的局部正交分解方法[J]. 数值计算与计算机应用, 2018, 39(1): 10-19.
[11] 杨建宏. 定常Navier-Stokes问题低次等阶稳定有限体积元算法研究[J]. 数值计算与计算机应用, 2017, 38(2): 91-104.
[12] 周宇, 李秋齐. 基于降基多尺度有限元的PGD方法及其在含参数椭圆方程中的应用[J]. 数值计算与计算机应用, 2017, 38(2): 105-122.
[13] 李琴. Stokes方程的一种预处理方法[J]. 数值计算与计算机应用, 2017, 38(2): 81-90.
[14] 曹济伟, 葛志昊, 刘鸣放. Stokes方程基于多尺度函数的稳定化有限元方法[J]. 数值计算与计算机应用, 2017, 38(1): 68-80.
[15] 施意. 不同密度与粘性的多相流移动接触线问题的自适应有限元方法[J]. 数值计算与计算机应用, 2015, 36(4): 297-309.
阅读次数
全文


摘要