• 论文 • 上一篇    下一篇

求解相同PDE不同边值问题的一种简化D-N交替法

董永新, 王寿城   

  1. 合肥工业大学数学学院, 合肥 230009
  • 收稿日期:2013-09-21 出版日期:2014-06-15 发布日期:2014-05-29

董永新, 王寿城. 求解相同PDE不同边值问题的一种简化D-N交替法[J]. 数值计算与计算机应用, 2014, 35(2): 125-130.

Dong Yongxin, Wang Shoucheng. A SIMPLIFIED D-N ALTERNATIVE METHOD FOR THE SAME PDE WITH DIFFERENT BOUNDARY CONDITIONS[J]. Journal of Numerical Methods and Computer Applications, 2014, 35(2): 125-130.

A SIMPLIFIED D-N ALTERNATIVE METHOD FOR THE SAME PDE WITH DIFFERENT BOUNDARY CONDITIONS

Dong Yongxin, Wang Shoucheng   

  1. School of Mathematics HeFei University of Technology, HeFei 230009, China
  • Received:2013-09-21 Online:2014-06-15 Published:2014-05-29
本文构造了一种简化的D-N交替法来求解Poisson方程带有不同边值问题。先求两个方程系数矩阵,函数值差额的先验估计矩阵,再用简化的D-N交替法求解。本文的算法简化了,而且可以同时求解不同的边值问题,从而提高计算效率。文中还得出与Richardson迭代法具有最优特性等价的松弛因子θn以及简化D-N交替法对应问题的真解u的表达式。
In this paper, we constructed a simplified D-N alternative method to solve Poisson equation with different boundary value problems. First we compute two equation's coefficient matrixes and the function value's difference preestimate matrix. Then the simplified D-N alternative method was used. The method was simplified and could solve Poisson equation with different boundary value problems once. Hence the computing efficiency was promoted. Also we got the representation of the relaxation parameter θn which was equivalent to that in the Richardson's iteration, being optimal, and the true solution which was in simplified D-N alternative method of related problems u.

MR(2010)主题分类: 

()
[1] 冯康, 余德浩.关于调和方程自然积分算子的一个定理[J]. 计算数 学, 1994, 16(2): 222-226.

[2] 冯康. 论微分与积分方程以及有限与无限元[J]. 计算数学, 1980, 2(1): 101-105.

[3] 邹军, 黄鸿慈. Schwarz混乱松弛法及同步和异步并行算法[J]. 计算数学, 1992, 14(1): 103-106.

[4] 郑权等.无界区域Stokes问题非重叠区域分解算法及其收敛性[J]. 计 算数学, 2010, 32(2): 114-123.

[5] 吴金彪. D-N交替迭代法及其收敛性分析[J]. 数值计算与计算机应 用, 2002, 23(2): 122-130.

[6] 蒋美群, 邓庆平. 一个双调和方程的Schwarz交替法[J]. 计算数学, 1994, 16(1): 93-101.

[7] Marini L D, Quarteroni A. A relaxation procedure for domain decomposition method using finite elements[J]. Numer. Math, 1989, 55: 575-598.

[8] 顾金生, 胡显承. 关于解椭圆型问题的两个子区域不重叠区域分解 法[J]. 计算数学, 1994, 16(4): 432-447.

[9] 余德浩. STEKLOV-POINCARE算子与自然积分算子及GREEN函数间的关 系[J]. 计算数学, 1995, 17(3): 331-341.

[10] 余德浩. 无界区域非重叠区域分解算法的离散化及其收敛 性[J]. 计算数学, 1996, 18(3): 328-336.
[1] 张志红, 梁艳, 王汉权. 求解Vlasov-Poisson方程组的一种时间分裂傅里叶谱方法[J]. 数值计算与计算机应用, 2018, 39(2): 111-134.
[2] 罗兴钧, 张荣, 熊玲娟, 胡文玉. 求解Richardson迭代方程的快速配置法[J]. 数值计算与计算机应用, 2015, 36(4): 261-274.
[3] 林府标, 张千宏. 三维Poisson方程的三种有限元解及特征值下界[J]. 数值计算与计算机应用, 2015, 36(1): 69-80.
[4] 任善静, 林府标, 孙萍, 罗振东. Poisson方程的Q1rot元和NF1元特征值法[J]. 数值计算与计算机应用, 2010, 31(1): 20-29.
[5] 刘会坡,严宁宁. Poisson方程特征值的四种有限元解及比较[J]. 数值计算与计算机应用, 2005, 26(2): 81-91.
阅读次数
全文


摘要