• 论文 • 上一篇    

时空混沌对可激发介质中螺旋波的影响的研究

  

  1. 广西师范大学物理科学与技术学院, 广西 桂林 541004
  • 收稿日期:2011-11-09 出版日期:2012-06-15 发布日期:2012-06-13
  • 基金资助:
    国家自然科学基金(批准号: 11165004)资助项目.

丁赛香,  唐国宁. 时空混沌对可激发介质中螺旋波的影响的研究[J]. 数值计算与计算机应用, 2012, 33(2): 149-158.

Ding Saixiang, Tang Guoning. THE STUDY ON THE EFFECT OF SPATIOTEMPORAL CHAOS ON SPIRAL WAVES IN EXCITABLE MEDIA[J]. Journal of Numerical Methods and Computer Applications, 2012, 33(2): 149-158.

THE STUDY ON THE EFFECT OF SPATIOTEMPORAL CHAOS ON SPIRAL WAVES IN EXCITABLE MEDIA

Ding Saixiang, Tang Guoning   

  1. College of Physics and Technology, Guangxi Normal University, Guilin, 541004, Guangxi, China
  • Received:2011-11-09 Online:2012-06-15 Published:2012-06-13
心肌细胞里离子通道的随机打开, 在心肌组织中产生的空间分布电流就是时空混沌的. 为了了解时空混沌对螺旋波的影响, 基于B\"{a}r模型研究了两层耦合可激发介质系统中螺旋波的演化, 提出无条件和有条件两种驱动响应耦合. 耦合前,驱动和响应子系统分别处于时空混沌态和螺旋波态. 在不同的参数下, 发现螺旋波表现出不同的动力学行为. 在很小的耦合强度下, 时空混沌对螺旋波动力学行为几乎无影响. 当耦合强度很大时, 无条件耦合总是导致螺旋波的破碎. 当相关参数适当选取时, 时空混沌既能提高受其作用介质的激发性, 也能降低它的激发性.此外, 它还能使稳定螺旋波和漫游螺旋波作无规漫游或无规漂移, 甚至导致螺旋波漂移出系统; 对于不稳定螺旋波, 时空混沌能极大延迟螺旋波出现破碎. 特别是, 在有条件耦合下, 可以使不稳定螺旋波成为稳定或漫游螺旋波.
The stochastic opening of ion channel in myocardial cells can generate spatially distributed currents in cardiac tissue. These currents are spatiotemporal chaos. In order to know the effect of spatiotemporal chaos on spiral wave, we investigate the evolution of spiral waves in a system of two coupled excitable media by using Bär model. The drive-response coupling schemes with or without constraint condition are proposed. The response and drive subsystems are respectively in the state of spiral wave and spatiotemporal chaos before the coupling turns on. We find that spiral wave exhibits different dynamical behaviors for different parameters. When the coupling strength is weak, the dynamical behavior of spiral wave in response system almost remains unchanged. When the coupling strength is strong, the coupling without constraint condition always leads to the breakup of spiral wave. When the related parameters are properly chosen, spatiotemporal chaos not only can enhance the excitation of the forced medium but also reduce it. In addition, it can induce chaotic meander or drift of a stable or meandering spiral wave, and even causes spiral wave to move out of system. It can greatly delay the breakup of an unstable spiral wave. Specially, it causes an unstable spiral wave become a stable or chaotically meandering spiral wave under the coupling with constraint condition.

MR(2010)主题分类: 

()
[1] Winfree A T. The Geometry of Biological Time[M]. New York: Springer, 1980.
[2] Murray J D. Mathematical Biology[M]. Berlin–Heidelberg–New York: Springer, 1993.
[3] Mikhailov A. Foundations of Synergetics I[M]. 2nd Edition.Berlin–Heidelberg– New York: Springer, 1994.
[4] Meron E. Pattern formation in excitable media[J]. Phys Rep, 1992, 218: 1-66.
[5] Weiss C O, Vilaseca R. Dynamics of Lasers[M]. Weinheim: VCH, 1991.
[6] Larotonda M A, Hnilo A, Mendez J M, Yacomotti A M. Experimental investigation on excitability in a laser with a saturable absorber[J]. Phys Rev A 2002 65{033812-033817.
[7] Koch C. Biophysics of Computation [M]. New York: Oxford University Press, 1999.
[8] Xing P, Braun H A, Wissing M. Synchronization of the noisy electrosensitive cells in the paddlefish[ J]. Phys Rev Lett, 1999, 82: 660-663.
[9] 欧阳颀. 扩散系统中的斑图动力学[M]. 上海: 上海科技教育出版社, 2000.
[10] Tyson J J, Keener J P. Singular perturbation theory of traveling waves in excitable media[J]. Physica D, 1988, 32: 327-361.
[11] Cross M C, Hohenberg P C. Pattern formation outside of equilibrium[J]. Rev Mod Phys, 1993, 65: 851-1112.
[12] Kerner B S, Osipov V V. A new approach to problems of self-organization and turbulence[J]. Autosolitons Kluwer, 1994.
[13] Martyn P N, Alexander V P. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Bio, 2004, 85(2-3): 501-22.
[14] Feistel R, Ebeling W. Evolution of Complex Systems: Self-organization, Entropy and Developmen[ M]. Kluwer, 1989.
[15] Sendi?na-Nadal I et al. Brownian Motion of Spiral Waves Driven by Spatiotemporal Structured Noise[J]. Phys Rev Lett, 2000, 84: 2734-2737.
[16] Ma J, Jia Y. Breakup of Spiral Waves in Coupled Hindmarsh-Rose Neurons[J]. Chin Phys Lett, 2008, 12: 4325-4329.
[17] Kadar S, Wang J C, Showalter K. Noise-supported traveling waves in sub-excitable media[J]. Nature(London), 1998, 391: 770-772.
[18] Hou Z H, Xin H W. Noise sustained spiral waves: Effects of spatial and temporal memory[J]. Phys Rev Lett, 2002, 89: 280601-280604.
[19] Bär M, Eiswirth M. Turbulence due to spiral breakup in a continuous excitable medium[J]. Phys Rev E, 1993, 48: R1635-R1637.
[20] 钱郁, 宋宣玉, 时伟, 陈光旨, 薛郁. 可激发介质湍流的耦合同步及控制[J]. 物理学报, 2006, 55: 4420-4427.
[21] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, and Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle[J]. Nature, 1992, 355: 349-351.
[22] Qu Z L, Xie F G, Garfinkel A, and Weiss J N. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation[J]. Biophys J, 2000, 78: 2761-2775.
No related articles found!
阅读次数
全文


摘要