• 论文 • 上一篇    

二次特征值问题的并行Jacobi-Davidson方法及其应用

王顺绪1,2, 戴华1   

    1. 南京航空航天大学理学院,南京 210016
    2. 淮海工学院数理系,江苏连云港 222005
  • 出版日期:2008-12-14 发布日期:2008-12-24

王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 29(4): 313-320.

Wang Shunxu, Dai Hua. A PARALLEL JACOBI-DAVIDSON METHOD FOR SOLVING QUADRATIC EIGENVALUE PROBLEM AND ITS APPLICATION[J]. Journal of Numerical Methods and Computer Applications, 2008, 29(4): 313-320.

A PARALLEL JACOBI-DAVIDSON METHOD FOR SOLVING QUADRATIC EIGENVALUE PROBLEM AND ITS APPLICATION

Wang Shunxu1,2, Dai Hua1   

    1. College of Science, Nanjing University of Aeronautics and  Astronautics, Nanjing 210016, China
    2. Dept. of Mathematics and Physics, Huahai Institute of   Technology, Lianyungang 222005, China
  • Online:2008-12-14 Published:2008-12-24

给出了求解二次特征值问题多个特征对的一种并行Jacobi-Davidson方法, 该方法在子空间中求解投影矩阵的二次特征值问题,利用校正方程的解扩充子空间, 并以某型号机翼在结构动力分析中的二次特征值问题为例, 在多处理机并行系统IBM-P650上进行了数值试验,试验结果表明该算法具有较高的加速比和并行效率.

A parallel Jacobi-Davidson method is presented for computing a few of eigenpairs of quadratic eigenvalue problems. The method directly
solves the quadratic eigenvalue problems in a projection subspace, and expands the subspace by the solution of the correction equation.
The parallel implementation of the method is discussed, and a quadratic eigenvalue problem arising from structural dynamics
analysis of a plane wing is solved by the method on the parallel computer IBM-P650. The numerical experiments show that the parallel
Jacobi-Davidson method is very effective.

MR(2010)主题分类: 

()

[1]Sleijpen G L G, Van der Vorst H A. A Jacobi-Davidson iteration method for linear eigenvalue problems[J]. SIAM J. Matrix Anal. Appl., 1996, 17 (2): 401-425.
[2]Sleijpen G L G, Booten A G L, Fokkema D R, Van der Vorst H A. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems[J]. Bit, 1996, 36(3): 595-633.
[3]Betcke T, Voss H. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems[J]. Future Generation Computer Systems, 2004, 20(3): 363-372.
[4]Meerbergen K. Locking and restarting quadratic eigenvalue solvers[J]. SIAM J. Sci. Comput., 2001, 22(5): 1814-1839.
[5]Stathopoulos A, McCombs J R. A parallel, block, Jacobi-Davidson implementation for solving large eigenvalueproblems on coarse grain environments[C]. In proceedings of the 1999 International Conference on Parallel and Distributed Processing Techniques and Applications. USA: CSREA Press, 1999, 2920-2926.
[6]贾仲孝,孙玉泉.精化的二次残量迭代法[J]. 高等学校计算数学学报. 2004, 26(2): 146-155.
[7]IBM Corp.. User's Guide of IBM XL Fortran. version 8.1, 2003.
[8]Gropp W, Lusk E, Ashton D, et al.. MPICH2 User's Guide. version 1.0.5, 2006.
[1] 王丽. 三类新的求解广义最小二乘问题的预处理GAOR方法[J]. 数值计算与计算机应用, 2020, 41(4): 282-296.
[2] 龚方徽, 孙玉泉, 杨柳. 二次正交Arnoldi方法的隐式重启算法[J]. 数值计算与计算机应用, 2017, 38(4): 256-270.
[3] 梁觊, 戴华. 求解对称特征值问题的块Chebyshev-Davidson方法[J]. 数值计算与计算机应用, 2011, 32(3): 209-219.
阅读次数
全文


摘要