• 论文 • 上一篇    下一篇

动态中子输运方程迭代初值的选取方法

洪振英,袁光伟,傅学东   

  1. 北京应用物理与计算数学研究所, 北京100088
  • 出版日期:2008-12-14 发布日期:2008-12-24
  • 基金资助:

    国家重点基础研究发展计划(973 计划)(2005CB321703),     国家自然科学基金~(60533020)   和计算物理实验室基金资助项目.

洪振英,袁光伟,傅学东. 动态中子输运方程迭代初值的选取方法[J]. 数值计算与计算机应用, 2008, 29(4): 302-312.

Hong Zhenying, Yuan Guangwei, Fu Xuedong. METHODS OF DETERMINING ITERATIVE INITIAL VALUE  FOR TIME-DEPENDENT NEUTRON TRANSPORT EQUATION[J]. Journal of Numerical Methods and Computer Applications, 2008, 29(4): 302-312.

METHODS OF DETERMINING ITERATIVE INITIAL VALUE  FOR TIME-DEPENDENT NEUTRON TRANSPORT EQUATION

Hong Zhenying,  Yuan Guangwei, Fu Xuedong   

  1. Institute of Applied Physics and Computational Mathematics,   Beijing 100088, China
  • Online:2008-12-14 Published:2008-12-24

研究离散纵标动态中子输运方程迭代求解时,迭代初值的不同选取方法,设计合理的迭代初值可以适当放宽对时间步长的限制,缩短计算时间. 设计四种迭代初值并应用于数值求解中的等比格式和菱形格式,其中等比格式形成非线性离散方程,菱形格式形成线性离散方程.考察不同迭代初值的计算效率,分别对物理量变化平缓以及变化剧烈的问题进行考察.数值算例表明构造的基于物理量随时间走势的预估值作为迭代初值优势明显,这在保证计算精度的前提下提高了数值计算效率.

In this paper the methods of  determining iterative initial value about iterative procedure for discrete ordinate time-dependent neutron
transport equation are studied. Proper iterative initial value can extend time step limit, thereby save computing time.
Four kinds of methods which are applied to exponential method and diamond method are studied and the different numerical results are
compared. The discrete equation of exponential method is nonlinear and the discrete equation of diamond method is linear. The numerical results
by using different initial value on problems of different physical process show that the method of choosing iterative initial value based
on the physical process has higher computational efficiency than others. Thus one can select more rational method to solve time-dependent
transport equation such that the corresponding method can improve the computational efficiency on the condition of keeping numerical precision.

MR(2010)主题分类: 

()

[1]Dinshaw Balsara. Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods[J]. Journal of Quantitaves Spectroscopy $\delta$ Radiative Transfer, 2001, 69: 671-707.
[2]Lewis E E, Miller W F. Computational methods of neutron transport[M]. La Grange Park. America Nuclear Societ, Inc. 1993.
[3]杜书华,张树发,王元璋,等. 输运问题的计算机模拟[M]. 长沙: 湖南科技出版社, 1989.
[4]袁光伟. 非线性抛物型方程迭代加速计算方法[G]. 计算物理实验室年报, 2004.
[5]Wareing T A, Walters W F and Morel J E. A Diffusion Accelerated Solution Method for the Nonlinear Characteristic Scheme in Slab Geometry[J]. Nucl.Sci. Eng., 1996, 124: 72-81.
[6]Morel J E, Dendy J E and Wareing T A. Diffusion Accelerated Solution of the 2-D Sn Equations with Bilinear-Discontinuous Differencing[J]. Nucl. Sci. Eng., 1993, 115: 304-319.
[7]Ramone G L and Adams M L. A Transport Synthetic Acceleration Method for Transport Iterations[J]. Nucl. Sci. Eng., 1997, 125: 257-283.
[8]Lansrud D. A Spatial Multigrid Iterative Method for One-Dimensional Discrete-Ordinates Transport Problems[C]. Mathematics and Compulation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, 2005.
[9]Morel J E and Manteuffel T A. An Angular Multigrid Acceleration Technique for Sn Equations with Highly Forward-Peaked Scattering[J]. Nucl. Sci. Eng., 1991, 107: 330-342.
[1] 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80.
阅读次数
全文


摘要