• 论文 • 上一篇    下一篇

三维椭圆问题三次有限元方程的代数多层网格法

张红梅1, 肖映雄2, 舒适1   

    1. 湘潭大学数学与计算科学学院, 湖南湘潭 411105
    2. 湘潭大学土木工程与力学学院, 湖南湘潭 411105
  • 出版日期:2008-12-14 发布日期:2008-12-24
  • 基金资助:

    国家自然科学基金资助项目(10771178, 10676031), 教育部重点 项目和湖南 省教育厅重点项目(208093, 07A068),    高性能科学计算研究资助项目(2005CB321702)和湖南省自然科学基金联合 基金资助项目(07JJ6004).

张红梅, 肖映雄, 舒适. 三维椭圆问题三次有限元方程的代数多层网格法[J]. 数值计算与计算机应用, 2008, 29(4): 277-290.

Zhang Hongmei, Xiao Yingxiong, Shu Shi. AMG METHOD FOR CUBIC FINITE-ELEMENT  DISCRETIZATIONS OF ELLIPTIC PROBLEMS  IN THREE DIMENSIONS[J]. Journal of Numerical Methods and Computer Applications, 2008, 29(4): 277-290.

AMG METHOD FOR CUBIC FINITE-ELEMENT  DISCRETIZATIONS OF ELLIPTIC PROBLEMS  IN THREE DIMENSIONS

Zhang Hongmei1, Xiao Yingxiong2, Shu Shi1   

    1. School of Mathematics and Computational Science in  Xiangtan University, Xiangtan 411105, China
    2. Civil Engineering and Mechanics College in Xiangtan University,  Xiangtan 411105, China
  • Online:2008-12-14 Published:2008-12-24

通过分析三次有限元空间与线性有限元空间之间的关系,提出了一种求解三维椭圆问题三次有限元方程的两水平方法. 然后,通过调用现有的代数多层网格 (AMG)法求解粗水平方程,建立了求解三次有限元方程的AMG法,并对其收敛性进行了严格的理论分析. 数值实验结果表明,本文设计的AMG方法对求解三维椭圆问题三次有限元方程具有很好的计算效率和鲁棒性.

A two-level method is first proposed in this paper for cubic finite-element discretizations of elliptic problems with jump coefficients in three dimensions by analyzing the relationship between the linear finite-element space and cubic finite-element space. And then, an algebraic
 multigrid (AMG) method is obtained with the existing solver used as a  solver on the first coarse level. Furthermore, the corresponding
 theoretical analysis is presented for the convergence of the  constructed AMG algorithm. The results of various numerical experiments
 are shown that the resulting AMG method is robust and efficient for  solving finite element equations discretized by cubic elements in three
 dimensions.

()

[1]Brandt A, McCormick S and Ruge J. Algebraic multigrid ({AMG}) for automatic multigrid solution with application to geodetic computations, Technical report, Inst. for Comp. Studies, Fort Collins, 1982.
[2] Ruge J W and St{\"u}ben K. Algebraic multigrid, In S.F. McCormick, editor, Multigrid methods, Frontiers in applied mathematics, pages 73-130, Philadelphia, Pennsylvania, 1987, SIAM.
[3]Shu Shi, Xu Jinchao, Yang Ying and Yu Haiyuan. An algebraic multigrid method for finite element systems on criss-cross grids[J]. Advances in Computational Mathematics, 2006, 25: 287-304.
[4]舒适,黄云清,阳莺,蔚喜军. 一类三维等代数结构面网格剖分下的代数多重网格法[J]. 计算物理, 2005, 22(6): 480-488.
[5]谭敏,肖映雄, 舒 适. 一种各向异性四边形网格下的代数多重网格法[J]. 湘潭大学自然科学学报, 2005, 27(1): 78-84.
[6]Xu J and Zikatanov L. On the energy minimizing base for algebraic multigrid methods[J]. Comput. Visual Sci., 2004, 7: 121-127.
[7]Vanek P, Mandel J and Brezina M, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[J]. Computing, 1996, 56(3): 179-196.
[8]Brezina M, Cleary A J, Falgout R D, Henson V E, Jones J E, Manteuffel T A, McCormick S F and Ruge J W. Algebraic multigrid based on element interpolation(AMGe)[J]. SIAM J. Sci. Comput., 2000: 22(5): 1570-1592.
[9]Ruge J. AMG for higher-order discretizations of second-order elliptic problems, in: Abstracts of the Eleventh Copper Mountain Conference on Multigrid Methods (http://www.mgnet.org/mgnet/Conferences/CopperMtn03/Talks/ruge.pdf), 2003.
[10]Heys J J, Manteuffel T A, Mcormick S F and Olson L N. Algebraic Multigrid (AMG) for Higher-Order Finite Elements[J]. Journal of Computational Physics, 2005, 204: 520-532.
[11]孙杜杜,舒适, 求解三维高次拉格朗日有限元方程的代数多重网格法[J]. 计算数学, 2005, 27: 101-112.
[12]Shu Shi, Sun Dudu and Xu Jinchao. An Algebraic Multigrids for Higher Order Finite Element discretizations[J]. Computing, 2006, 77: 347-377.
[13]Xu J and Zikatanov L. The method of alternating projections and the method of subspace corrections on Hilbert space[J]. Journal of the American Mathematics Society, 2002, 15: 1429-1446.
[14]Brezina M, Mandel J and Van\v{e}k P. Energy optimization of algebraic multigrid bases[J]. Computing, 1999, 62(3): 205-228.
[15]Brezina M, Falgout R, MacLachlan S, Manteuffel T, McCormick S, and Ruge J. Adaptive algebraic multigrid[J]. SIAM J. Sci. Comput., 2006, 27(4): 1261-1286 (electronic).
[16]Hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre.
[17]Henson V E, Yang U M. BoomerAMG: a Parallel Algebraic Multigrid Solver and Pre-conditioner[J]. Applied Numerical Mathematics, 2002, 41: 155-177.
[18]Bank R, Dupont T and Yserentant H. The Hierarchical basis multigrid method[J]. Numer. Math., 1988, 52: 427-458.
[19]Yserentant H. On the multi-level splitting of finite element spaces[J]. Numer. Math., 1986, 49: 379-412.
No related articles found!
阅读次数
全文


摘要