• 论文 •

### 二维热传导方程有限差分区域分解算法

1. 北京应用物理与计算数学研究所计算物理实验室;吉林大学数学科学学院 北京 100088;长春 130012
• 出版日期:2006-02-20 发布日期:2006-02-20

### FINITE DIFFERENCE DOMAIN DECOMPOSITION ALGORITHM FOR THE TWO-DIMENSIONAL HEAT EQUATION

1. L(u|¨) Guixia (Laboratory of Computational Physics, IAPCM, Beijing 100088) Ma Fuming (Institute of Mathematics, Jilin University, Changchun 130012)
• Online:2006-02-20 Published:2006-02-20

In this paper, a parallel finite difference scheme for numerically solving the two-dimensional heat equation is studied. In this procedure, the domain over which the problem is defined is divided into subdomains by introducing interface points. Interface values between subdomains are found by asymmetric schemes, once these values are calculated, subdomain problems can be solved in parallel. Stability conditions and maximum norm error estimates for these procedures are derived, which demonstrate that our schemes have satisfactory stability and higher convergence order.
()
 [1] C.N.Dawson, Q.Du and T.F.Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, J. Math. Comp, 57(1991) 63-71. [2]张宝琳,热传导方程的有限差分区域分裂显-隐算法的注记,航空计算技术,28:3(1998)51-54． [3]张宝琳,谷同祥,莫则尧,数值并行计算原理与方法,北京:国防工业出版社,1999． [4]张宝琳,申卫东,热传导方程有限差分区域分解算法的若干注记,数值计算与计算机应用,23:2(2002)81-90． [5]吕桂霞,马富明,抛物方程的一类并行差分格式,吉林大学学报(理学版),40:4(2002)327-330． [6] Wan Zhengsu, Zhang Baolin, Chen Guangnan, Design and Analysis of Finite Difference Domain Decomposition Algorithms for the Two-dimensional Heat Equation, Proceedings: Fifth International Conference on Algorithms and Architectures for Parallel Processing, October 23-25, 2002, Beijing, China. [7]郭本瑜,偏微分方程的差分方法,北京,科学出版社,1985． [8] V.K.Saul'yev, Integration of equations of parabolic type by method of nets, New York, 1964.
 No related articles found!