• 论文 • 上一篇    

高性能八节点六面体组合杂交元

聂玉峰,周天孝   

  1. 西北工业大学应用数学系 ;航空计算技术研究所
  • 出版日期:2003-03-20 发布日期:2003-03-20

聂玉峰,周天孝. 高性能八节点六面体组合杂交元[J]. 数值计算与计算机应用, 2003, 24(3): 231-240.

8-NODE HEXAHEDRON COMBINED HYBRID ELEMENT WITH HIGH PERFORMANCE

  1. Nie Yufeng (Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072) Zhou Tianxiao (Aeronautical Computing Technique Research Institute, Xi'an 710068)
  • Online:2003-03-20 Published:2003-03-20
对于组合结构分析,将其所有构件视为三维问题求解,不仅避免了为使不同维数的数学模型祸合而采用的过渡单元,还可以减少由模型简化而引入的模型误差,因而是求解组合结构问题的一条具有优势的途径,同时为突破大规模计算瓶颈现象需采用低联立求解自由度的单元.众所周
In this paper, energy compatibility is used to optimize the stress interpolation functions in hybrid scheme, and as a result, two 8-node hexahedron combined hybrid elements with high performance are developed. The numerical experiments show that the presented elements improve the computing accuracy of stress of 8-node isoparametric element greatly, and are insensitive to mesh distortion, locking-free to thickness. To avoid the complex explicit formula of the stress interpolation which being energy compatible to nonconforming displacements, both Lagrangian multiplier method and generalized inverse methods are suggested.
()

[1] 周天孝,聂玉峰,胡兵,谢小平,克服Locking发散性的有限元研究进展,力学进展,31:4(2001) ,509-526.
[2] Zhou T.-X., Stabilized Hybrid Finite Element Methods Based on Combination of Saddle Point Principles of Elasticity Problem, Math. Comput., 2003.
[3] Zhou T.-X., Nie Y.-F., Combined hybrid approach to finite element schemes of high performance,Int. J. Numer. Meth. Engrg., 51(2001) , 181-202.
[4] 聂玉峰,高性能组合杂交有限元方法,博士学位论文,航空计算技术研究所,2000年.
[5] 程云鹏,张凯院,徐仲,矩阵论,西北工业大学出版社,1989年.
[6] Chen W.-J., Cheung Y.-K., Three-dimensional 8-node and 20-node refined hybrid isoparameteric elements, Int. J. Numer. Meth. Engrg., 35(1992) , 1871-1889.
[7] 鹿晓阳等,Wilson非协调元的改进与研究,力学学报,21:3(1989) ,379-384.
[8] Wu C.-C, Cheung Y.-K., On optimization approaches of hybrid stress elements, Finite Elements Anal. Des., 21(1995) , 111-128.
[9] Pian T.H.H., Sumihara K., Rational approach for assumed stress finite elements, Inter. J. Numer.Meth. Engrg., 2O(1984) , 1685-1695.
[10] MacNeal R.H. and Harder R.L., A proposed standard set of problems to test finite element accuracy, Finite Elements in Analysis and Design, 1(1985) , 3-20.
No related articles found!
阅读次数
全文


摘要