• 论文 • 上一篇    下一篇

解稳定化的鞍点问题的迭代法

冯丽红   

  1. 复旦大学数学所 上海 200433
  • 出版日期:2003-03-20 发布日期:2003-03-20

冯丽红. 解稳定化的鞍点问题的迭代法[J]. 数值计算与计算机应用, 2003, 24(3): 225-230.

ITERATIVE METHOD ON SADDLE POINT PROBLEMS

  1. Feng Lihong (Institution of Mathematics, FuDan University, ShangHai, PRO, 200433)
  • Online:2003-03-20 Published:2003-03-20
求解Navier一Stokes方程相对Stokes方程是比较复杂的.许多文献对Stokes方程的迭代解法都做了深入讨论[l,2,4,s].如何快速求解N avier一stokes方程仍然是当前讨论的热点.一种方
A novel iterative method on saddle point problem is proposed in this paper. Numerical experiments show that this method is more efficient than the Uzawa method in [3].
()

[1] J.H. Bramble, J.E. Pasciak, and A.T. Vassilev. Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34:3 (1997) , 1072-1092.
[2] H.C. Elman and G.H. Golub. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer Anal. 31:6 (1994) , 1645-1661.
[3] J.H. Bramble, J.E. Pasciak, and A.T. Vassilev. Uzawa type algorithms for nonsymmetric saddle point problems, Math.compu. 69:230 (2000) , 667-689.
[4] A.J. Wathen and D.J. Silvester. Fast Iterative solution of stabilised Stokes systems Part Ⅰ: Using simple diagonal preconditioners. SIAM J. Numer. Anal, 30:3 (1993) , 630-649.
[5] A.J. Wathen and D.J. Silvester. Fast Iteratve solution of stabilised Stokes systems Part Ⅱ: Using General block preconditioners. SIAM J. Numer. Anal, 31. 5 (1994) , 1352-1367.
[6] Elman, H.C., Silvester,D. Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations. SIAM J. Sci. Comput. 17:1 (1996) , 33-46.
[7] Lihong Feng and Lingliang Sun. Uzawa Algorithm on Stabilized Navier-Stokes Problems. Numerical Mathematics, A Journal of Chinese Universities. 12:2 (2003) to appeare.
[8] Pascal Poullet. Staggered incremental unknowns for solving Stokes and generalized Stokes problems. Applied Numerical Mathematics 35(2000) 23-41.
[9] T.J.R. Hughes, W.K.Liu and A.Brooks, Finite element analysis of incompressible viscous flows by penalty function formulation, J.Comput.Phys. 30(1970) 1-60.
[10] F. Brezzi and M. Fortin, Mixed and Hybid Finite Element Methods, Springer-Verlag, New York,1991.
[11] R.L. Sani, P.M. Gresho, R.L. Lee and D.F.Griffiths, the cause and cure of the sprious pressures generated by certain finite element method solutions of the incompressible Navier-Stokes eaquations, Parts 1 and 2, Internat.J.Numer.Methods fluids(1981) 17-43, 171-204.
[12] D.J. Silvester and N. Kechkar, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Computer methods in applied mechanics and engineering 79 (1990) 71-86.
No related articles found!
阅读次数
全文


摘要