• 论文 • 上一篇    下一篇

弹性网格变形方法及其应用

田春松,胡健伟   

  1. 南开大学数学科学学院与教育部核心数学与组合数学实验室 ;南开大学、天津大学联合研究院应用数学中心
  • 出版日期:2003-03-20 发布日期:2003-03-20

田春松,胡健伟. 弹性网格变形方法及其应用[J]. 数值计算与计算机应用, 2003, 24(3): 215-224.

ELASTIC MESH DEFORMATION METHOD AND ITS APPLICATION

  1. Tian Chunsong (School of Mathematical Science and LPMC, Nankai University, Tianjin, 300071) Hu Jianwei (Center of Applied Mathematics, United Academy of Nankai University and Tianjin University)
  • Online:2003-03-20 Published:2003-03-20
网格生成是数值计算中的基础问题.在微分方程数值方法的实现过程中,一个合适的计算网格可以提高计算精度,大大降低计算复杂性.近年来,人们所关注的数值求解微分方程自适应方法也包含了网格自动生成的研究.目前,国内外在这方面的研究工作很多.以网格类型而言,有结
In this paper, an elastic mesh deformation method is described for optimization and adjustment of triangular mesh, generation of the numerical mesh and moving mesh.
()

[1] A. Bowyer, Computing Dirichlet tessellation, The computer J., 24:2(1981) , 162-166.
[2] D.F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, The computer J., 24:2(1981) , 167-172.
[3] S. Rebay, Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm, J. Comp. Phys., 106(1993) ,125-138.
[4] R. Li, T. Tang and P. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comp. Phys., 170(2001) , 562-588.
[5] 徐涛,水鸿寿,一种二维数值网格的构造方法,数值计算与计算机应用,20:2(1999) ,138-152.
[6] 冯康,石钟慈,弹性结构的数学理论,科学出版社,1981.
No related articles found!
阅读次数
全文


摘要