• 论文 • 上一篇    下一篇

等参谱元方法的研究

陈雪江,秦国良,徐忠   

  1. 西安交通大学流体机械研究所;西安交通大学流体机械研究所;西安交通大学流体机械研究所 西安 710049 ;西安 710049 ;西安 710049
  • 出版日期:2003-03-20 发布日期:2003-03-20

陈雪江,秦国良,徐忠. 等参谱元方法的研究[J]. 数值计算与计算机应用, 2003, 24(3): 201-206.

RESEARCH OF AN ISOPARAMETRIC SPECTRAL ELEMENT METHOD

  1. Chen Xuejiang Qin Guoliang Xu Zhong (Institute of Fluid Machinery, Xi'an Jiaotong University, Xi'an710049, P. R. China)
  • Online:2003-03-20 Published:2003-03-20
在求解偏微分方程的数值模拟中,主要有以下几种方法:有限差分法、有限元方法、有限分析法、谱方法等. 随着有限元方法成熟研究和谱方法[l]的飞速发展,Patera(1984年)提出了谱
An isoparametric spectral element method that combines the idea of the isoparametric element in finite element methods with spectral element methods is proposed. The computational domain is broken up into curvilinear quadrangular elements to approach boundaries more specifically and solve the differential equation in complex geometry. By this means both the Helmholtz equations with rectangular geometry and the Poisson's equations with annular geometry those have analytical solutions are solved. The predicted results are in excellent agreement with the analytical solutions.
()

[1] Gottlieb D, Hussaini M Y, Orgszag S A., Theory and Application of Spectral Method
[A]. In:Voigt R G, Gottlieb D, Hussaini M Y., Spectral Method for Partial Differential Equation
[C].SIAM Philadelphia. 1984. 1-54
[2] Patera A T., A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
[J]. J Comput Phys. 154(1984) , 468-488
[3] 李开泰,黄艾香,黄庆怀,有限元方法及其应用(修订本)
[M],西安交通大学出版社,西安,1992.
[4] 秦国良,徐忠,谱元方法求解二维不可压缩 Navier-Stokes方程
[J].应用力学学报.7:4(2000) ,20-25.
[5] Korcazk K Z, Patera A T., An Isoparametric Spectral Element Method for Solution of the Navier-Stokes Equations in Complex Geometry
[J]. J Comput Phys. 62(1986) , 361-382.
No related articles found!
阅读次数
全文


摘要