• 论文 • 上一篇    下一篇

非线性RLW方程的有限差分逼近

冯民富,潘璐,王殿志   

  1. 四川大学数学学院;四川大学数学学院;四川大学数学学院 610064 ;610064 ;610064
  • 出版日期:2003-03-20 发布日期:2003-03-20

冯民富,潘璐,王殿志. 非线性RLW方程的有限差分逼近[J]. 数值计算与计算机应用, 2003, 24(3): 167-176.

FINITE DIFFERENCE APPROXIMATE SOLUTIONS FOR THE RLW EQUATION

  1. Feng Minfu Pan Lu Wang Dianzhi (Department of Mathematics, Sichuan University)
  • Online:2003-03-20 Published:2003-03-20
引言 正则长波(RLW)方程是非线性长波的另一种表述形式.在进行非线性扩散波研究时,正则长波方程(RLW)因其描述大量重要的物理现象如浅水波和离子波等而占有重要的地位.
A finite difference scheme is proposed to solve the regularized long wave(RLW) equation for computational simplicity compared to finite element methods. Existence and uniqueness of numerical solutions are shown. A priori bound and the error estimates as well as conservation of energy of the finite difference approximate solutions are discussed with theory and numerical examples.
()

[1] F.E.Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Application of nonlinear partial differential equations. (ed.R.Finn) Proceedings of symposia in applied mathematics 17(1965) , 24-49, AMS,Providence.
[2] D.H.Peregrine, Calculation of the development of an undular vore, J.Fluid Mech., 25(1966) , 321-330.
[3] Lars Wahlbin, Error Estimates for a Galerkin Method for a Class of Model Equations for Long Waves, Numer. Math., 23(1975) , 289-303.
[4] J.C.Eilbeck and G.R.McGuire, Numerical study of the regularised long-wave equation Ⅱ:Interaction of solitary waves, J. Comput. Phys., 23(1977) , 63-73.
[5] M.E.Alexander and J.Ll. Morris, Galerkin methods applied to some model equations for non-linear dispersive waves, J. Comput. Phys., 30(1979) , 428-451.
[6] B.Y.Guo and B.S.Manoranjan, A spectral method for solving the RLW equation, IMA J.Numer.Anal., 3(1985) , 307-318.
[7] L.R.T.Gardner and G.A.Gardner, Solitary waves of the regularized long wave equation, J.Comput.Phys., 91(1990) , 441-459.
[8] L.R.T.Gardner, G.A.Gardner and I.Dag, A B-spline finite element method for the RLW equation,Comm. Numer. Methods Engrg., 11(1995) , 59-68.
[9] L.R.T.Gardner, G.A.Gardner and A.Dogan, A least-squares finite element scheme for the RLW equation, Comm. Numer. Methods Engrg., 12(1996) . 795-804.
[10] J.M.Sarna and I.Christie, Petrov-Galerkin methods for nonlinear dispersive waves, J. Comput.Phys., 39(1981) , 94-102.
[11] L.Wahlbin, Error estimates for a Galerkin method for a class of model equations for long waves,Numer. Math., 23(1975) , 289-303.
[12] Zhendong Luo an Ruxun liu, Mixed finite element analysis and numerical solitary solution for the RLW equation, SIAM J.Numer. Anal. 36:1(1998) , 89-104.
[13] S.K.Chung, Finite Difference Approximate Solutions for the Rosenau Equation, Applicable Analysis. Vol.69(1-2) , 149-156.
[14] D.H.Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25(1966) ,321-330.
[15] P.J.Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Phil.Soc., 85(1979) , 143-159.
[16] P.C.Jain, R.Shankar and T.V.Singh, Numerical solutions of regularised long wave equation, Commu.Numer. Methtods Eng., 11(1995) , 59-68.
No related articles found!
阅读次数
全文


摘要