]*>","")" /> 综述:产生伪随机数的若干新方法

• 论文 • 上一篇    下一篇

综述:产生伪随机数的若干新方法

杨自强,魏公毅   

  1. 中国科学院计算数学与科学工程计算研究所 ;北京应用物理与计算数学研究所计算物理实验室
  • 出版日期:2001-03-20 发布日期:2001-03-20

杨自强,魏公毅. 综述:产生伪随机数的若干新方法[J]. 数值计算与计算机应用, 2001, 22(3): 201-216.

A REVIEW ON SOME NEW METHODS TO GENERATE RANDOM NUMBERS

  1. Yang Ziqiang Wei Gongyi (Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing) (Laboratory of Computational Physics, Institute of Applied Physics & Computational Mathematics, Beijing)
  • Online:2001-03-20 Published:2001-03-20
In the present paper, we give a review of pseudo-random number generators. The new methods and theory appearing in 1990's will be focused. This paper concerns with almost all kinds of generators such as the linear, nonlinear and in- versive congruential methods, Fibonacci and Tausworthe (or feedback shift regis- ter) sequences, add-with-carry and subtract-with-borrow methods, multiple prime generator and chaotic mapping, as well as the theory of combination of generators.
()
[1]杨自强,张正军,乘同余法和组合随机数发生器的若干结果,第二届全国仿真方法与建模学术会议论文集(SCSI中 国会员办公室编)(1993).131-137 [2] An, Hongzhi, A Note on Chaotic Maps and Time Series, in P.M. Robinson and M. Rosenblatt (editors), Lecture Notes III, Statistics 115, Athens Conference on Applied Probability and Time Series (Vol. II: Time Series Analysis in Memory of E.J. Hannan). Springer-Verlag (1996), 15-26. [3] Box, G.E.P, and Muller, M.E., A Note on the Generation of Random Normal deviates, Ann. Math. Statist., 29 (1958), 610. [4] Bratley, P., Bennett, L.F., Schrage, L.E., A Guide to Simulation, 2nd ed. Springer-Verlag (1987). [5] Brown, M., and Solomom, H., On Combining Pseudorandom Number Generators, Ann. Math.Statist., 7 (1979), 691-695. [6] Deng, L.Y., George, E.O., Generation of Uniform Variate from Several Nearly Uniformly Distributed Variables, Comm. Statist. Simu., 19 (1990), 145-154. [7] Dieter, U., Pseudo-Random Number: the Exact Distribution of Pairs, Mathematics of Computation, 25 (1971), 855-883. [8] Eichenauer, 3., Grothe, H., Leh, J., Marsaglia's lattice test and non-linear congruential pseudo random number generators, Metrika, 35 (1988), 241-250. [9] Eichenauer-Herrmann, J., Grothe, H., A new inversive congruential pseudorandom number generator with power of two modulus. ACM Transactions on Modeling and Computer Simulation, 2:1 (1992), 1-11. [10] Eichenauer-Herrmann, J., Statistical independence of a new class of inversive congruential pseu-dorandom numbers. Mathematics of Computation, 60 :201 (1993), 375-384. [11] Ferrenberg, A.M., Landau, D.P., Wong, Y.J., Monte Carlo Simulations: Hidden Errors from "Good" Random Number Generators, Physical review letters, 69 :23 (1992), 3382-3384. [12] Fishman, G.S., Moore, L.R., An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus 231 - 1. SIAM J. Sci. Statist. Comput., 7 (1986), 24-45. [13] Grassberger, P., On Correlations in "Good" Random Number Generators, Phys. Lett., A 181 (1993), 43-46. [14] Hass, A., The Multiple Prime Random Number Generator, ACM Transactions on Mathematical Solfware, 13 :4 (1987), 368-381. [15] James, F., A review of pseudorandom number generators, Comp. Physics Commun., 60 :4 (1990),329-344. [16] Knuth, D.E., The Art of Computer Programming, Vol.2, 2nd ed. Addison Wesley, (1981). [17] L'Ecuyer, P., Efficient and Portable Combined Random Number Generators, Communications of ACM, 31 :6 (1988), 742-749,774. [18] L'Ecuyer, P. and Tezulca, S., Structural Properties for Two Classes of Combined Random Number Generators, Mathematics of Computation, 57 :196 (1991), 735-746. [19] Marsaglia, G., Random Numbers Fall Mainly in the Planes, Proc. Nat. Acad. Sci., 61 :1 (1968),25-28. [20] Marsaglia, G., A Current View of Random Number Generators, in: Computer Science and Statis-tics: The Interface, Vol. 16 ed. L. Billadr, Elsevier, (1985). [21] Marsaglia, G., Zaman, A., A New Class of Random Numbers Generators, Ann. Appl. Prob., 1 :3 (1991), 462-480. [22] Matteis, A.D., Pagnutti, S., Parallelization of Random Number Generators and Long-Range Cor-relations, Numerische Mathematik, 53 (1988), 595-608. [23] Matteis, AD., Pagnutti, S., Long-Range Correlation in Linear and Non-Linear Random Number Generation, Parallel Computing, 14 (1990), 207-210. [24] Nance, B.E., Overstreet, C., Some Experimental Observation on the Behaviour of Composite Random Number Generators, Oper. Res., 26 :5 (1978), 915-935. [25] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadel-phia, Pennsylvania, (1992). [26] Tausworthe, R.C., Random Numbers Generated by Linear Recurrence Modulo Two, Math. Cam-put., 19 (1965), 201-209. [27] Tezuka, S., Lattice Structure of Pseudorandom Sequences from Shift Register Generators, Pro-ceedings of the 1990 Winter Simulation Conference, IEEE Press, (1990). [28] Tezuka, S. and L'Ecuyer, P., Efficient and Portable Combined Tausworthe Random Number Generators, ACM Transactions on Modeling and Computer Simulation, 1 :2 (1991), 99-112. [29] Tezuka, S., L'Ecuyer, P., Couture, R., On the Lattice Structure of the Add-With-Carry and Subtract-With-Borrow Random Number Generators, ACM Transactions on Modeling and Com-puter Simulation, 3 :4 (1993), 315-333. [30] Wichmann, B.A., Hill, I.D., An Efficient and Portable Pseudo-Random Number Generator, Appl. Statist., 31 (1982), 188-190.
No related articles found!
阅读次数
全文


摘要