]*>","")" /> 板问题预条件子在曙光D1000+上的MPI实现

• 论文 • 上一篇    下一篇

板问题预条件子在曙光D1000+上的MPI实现

陈文斌,王岚   

  1. 复旦大学数学所!上海;复旦大学数学所!上海
  • 出版日期:2000-03-20 发布日期:2000-03-20

陈文斌,王岚. 板问题预条件子在曙光D1000+上的MPI实现[J]. 数值计算与计算机应用, 2000, 21(3): 216-225.

MPI ALGORITHM OF MULTILEVEL PRECONDITIONER FOR PLATE PROBLEM ON DAWN 1000+

  1. Chen Wen-bin,Wang Lan (Mathematics Institute of Fudan University, Shanghai)
  • Online:2000-03-20 Published:2000-03-20
An optimal multilevel preconditioner for plate problem was constructed in [7]. In this paper, the matrix presentation of the preconditioner is given and EBE technology is used to realize the saving and computing of global stiff matrix, interpolation matrix and transport matrix. An MPI algorithm is also given on Dawn 1000+.
()

[1] Bramble J.H., Pasicak J.E., Xu J., Parallel multilevel preconditioner, Math Comp., 55 (1990), 1-22.
[2] Carey C.F., Barragy E., Mclay R., Sharma M., Element-by-element vector and parallel computations,Communications in Applied Numerical Methods, 4 (1998), 299-307.
[3] Field M.R., Optimizing a parallel conjugate gradient solver, SIAM J. Sci. Comput., 19:(1) (1998),27-37.
[4] Oswald P., On a hierarchical conforming finite element methods for biharmonic equation, SIAM J.Numer. Anal., 29 (1992), 1610-1625.
[5] Snir M., Otto S., Husslederman S., Walker D., Dogarra J., MPI: the complete reference, The MITPress.
[6]王岚,板问题预处理算法的研究,硕士论文,复旦大学, 1998.
[7]许学军;多水平和多重网格方法中某些问题的研究,博士论文,复旦大学, 1997; A V-cgcle multigrid methodand additive multilevel preconditioners for the palte bending problem discretized by conforming finiteelements, Appl. Math. Comp., 93 (1998), 233-258.
[8] Xu J., Theory of multilevel methods, Ph.D. thesis, Corned University, 1989.
[9] Xu J., Iterative method by space decomposition and subspace correction, SIAM Review, 34:(4) (1992),581-613.
[10] Xu J., The auxiliary space method and optimal multigrid preconditions techniques for unstructuredgrids, Computing, 56 (1996), 251-235.
[11] Yserentant H., On the multilevel splitting of finite element, Numer. Math., 49 (1986), 379-412.
[12] Zhang X., Two level Schwarz methods for the biharmonic problem discretized by conforming C1elements, SIAM J. Numer. Anal., 33 (1996), 555-570.
No related articles found!
阅读次数
全文


摘要