]*>","")" /> 二维欧拉程序中一种新的分界面跟踪技术

• 论文 •    下一篇

二维欧拉程序中一种新的分界面跟踪技术

温万治,恽寿榕,张月琴   

  1. 北京应用物理与计算数学研究所计算物理实验室!北京 100088;北京理工大学机电工程系!北京 100081;华北工学院机电工程系!太原 030051
  • 出版日期:2000-03-20 发布日期:2000-03-20

温万治,恽寿榕,张月琴. 二维欧拉程序中一种新的分界面跟踪技术[J]. 数值计算与计算机应用, 2000, 21(3): 161-170.

AN ALGORITHM FOR TRACKING INTERMCES IN TWO-DIMENSIONAL EULERIAN CODE

  1. Wen Wan-zhi (Laboratory of Computation Physics, IAPCM, Beijing 100088, China) Yun Shou-rong (Mechanical and Engineering Department, Beijing Institute of Technology, Beijing 100081, China) Zhang Yue-qin (Mechanical and Engineering Department, North China
  • Online:2000-03-20 Published:2000-03-20
A method is presented for tracking interfaces, which is MOCL (marker on cell line) employed in two-dimensional Eulerian code. To test it, five kinds of objects with different shapes being uniform motion are numerically simulated in a two- dimensional Eulerian hydrodynamics code that uses the MOCL technique to track interfaces. Results show that the method is simple and feasible.
()

[1]李德元等著,二维非定常流体力学数值方法,科学出版社,1987
[2]恽寿榕等著,爆炸力学计算方法,北京理工大学出版社,1995
[3] W.F. Noh, Paul Woodward, SLIC (Simple Line Interface Calculation), Proc. of the fifth InternationalConference on Numerical Methods in Fluid Dynamics, Springer Lecture Notes in Physics 59(1976),330-340.
[4] C.W. Hirt, B.D. Nichols, Voolume of fluid (VOF) method for the dynamics of free boundaries, J.Comput. Phys., 39 (1981), 201-225.
[5] C.W. Hirt, B.D. Nichols, N.C. Romero, SOLA-A Numerical Solution Algorithm for transient FluidFlows, Los Alamos Scientific Lab., LA-5852, 1975.
[6]王智平,近水面核爆炸的数值研究,清华大学硕士学位论文, 1994.
[7] S. Osher, J.A. Sethian, Fronts propagating with currature-dependent speed: Algorithms based onHamilton-Jacobi formulations, J. of Comput. Phys., 79 (1988), 12-49.
[8] L.J. Hegeman, J.M. Walsh, HELP, A Multi-material Eulerian Program for compressible fluid andelastic-plastic flow in two space dimensions and time, AD-726459, 1976.
[9] D.L. Youngs, Time-Dependent Multi-material Fluid Dynamics, Edited by K.W. Morton and M.J.Baines, Academic Press, 1982, 273-285.
[10] N. Ashgriz, J.W. Poo, FLAIR: Flux line-segment model for advection and interface reconstruction, J.Comp. Phy., 93 (1991), 449-468.
[11]温万治,网格线示踪点法(MOCL)及其在数值模拟中的应用,北京理工大学博士学位论文,1998
No related articles found!
阅读次数
全文


摘要