]*>","")" /> 平面弹性方程外问题的非重叠型区域分解算法

• 论文 • 上一篇    下一篇

平面弹性方程外问题的非重叠型区域分解算法

郑权,余德浩   

  1. 北方工业大学;中国科学院计算数学与科学工程计算研究所!科学与工程计算国家重点实验室
  • 出版日期:2000-01-20 发布日期:2000-01-20

郑权,余德浩. 平面弹性方程外问题的非重叠型区域分解算法[J]. 数值计算与计算机应用, 2000, 21(1): 11-21.

A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR THE EXTEIOR PROBLEM OF PLANE ELASTICITY EQUATION

  1. Zheng Quan (North China University of Technology) Yu De-hao (State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences)
  • Online:2000-01-20 Published:2000-01-20
In this paper, a non-overlapping domain decomposition method is discussed for solving the exterior boundary value problem of plane elasticity equation. The exterior domain is naturally decomposed by a circle into a bounded domain and an unbounded domain. With the advantage of the natural boundary reduction, a D-N method is presented. This method is effective and geometric convergent. The convergence rate of this iteration is independent of the finite element mesh size, but dependent on the relaxation factor.
()

[1] Feng Kang, Yu De-hao, Canonical integral equations of elliptic boundary value problems and theirnumerical solutions, Proc. of Chine-Frane Symp. on FEM, Beijing, 1982; Science Press, Beijing,(1983), 211-252.
[2] Glowinski R., Golub G.H., Meurant G.A., Periaux J., eds., Proceedings of First international Sympo-sium on Domain Decompositon Methods for Partial Differential Equations, SIAM, Philadelphia, PA,1988.
[3] Han Hou-de, Wu Xiao-nan, The approximation of the exact boundary condition at an artificial boundary for linear elastic equations and its application, Proc. of the inter. Conf on Scientific Computation,(Hangzhou, 1991); World Scientific Publishing Company, Singapore, 1992; Math. Comp., 59: 199(1992), 21--37.
[4] Marini L.D., Quarteroni A., A relaxation procedure for domain decomposition methods using finiteelements, Nuner. Math., 55 (1989), 575--598.
[5] Yu De-hao, Coupling canonical boundary element method with FEM to solve harmonic problem overcrack domain, J. Comp. Math., 1: 391983), 195--202.
[6] Yu De-bac Approximation of boundary conditions at infinity for harmonic equation, J. Comp. Math.,3: 3 (1985), 219--227.
[7] Yu De-bac, A direct and Natural Coupling of BEM and FEM, Boundary element XIII, ComputationalMechanics Publications, Southampton, 1991, 995--1004.
[8]冯康,余德浩,自然边界归化与区域分解,冯康文集,北京,国防工业出版社,1994,367-371.
[9]吕涛,石济民,林振宝,区域分解算法-偏微分方程数值解新技术,北京,科学出版社,1992.
[10]余德浩,自然边界元方法的数学理论,科学出版社,1993.
[11]余德浩,无界区域上基于自然边界归化的区域分解算法,计算数学,10:4(1994),448一459.
[12]余德浩,无界区域非重叠区域分解算法的离散化及其收敛性,计算数学,18:3(1996),328一336.
[13]郑权,余德浩,基于半平面上自然边界归化的无界区域上的 Schwarz交替法及其离散化,计算数学, 19: 2(1997), 205—218.
[14]郑权,余德浩,无界区域上基于自然边界归他的双调和方程的一种重叠型区域分解算法,计算数学,19:4(1997), 438—448.
[15]郑权,无界区域上基于自然边界归化的一种重叠型区域分解算法及其离散化,计算数学,20:1(1998),11—24.
[16]郑权,余德浩,无穷扇形区域调和边值问题的重叠型区域分解算法,数值计算与计算机应用,19:1(1998),64-73.
[17]祝家麟,椭圆边值问题的边界元分析,科学出版社,1991.
No related articles found!
阅读次数
全文


摘要