]*>","")" /> 二维无结构三角形网格的高分辨率大粒子有限体积方法

• 论文 • 上一篇    下一篇

二维无结构三角形网格的高分辨率大粒子有限体积方法

宋松和,李荫藩   

  1. 中国科学院计算数学与科学工程计算研究所;中国科学院计算数学与科学工程计算研究所
  • 出版日期:1997-01-20 发布日期:1997-01-20

宋松和,李荫藩. 二维无结构三角形网格的高分辨率大粒子有限体积方法[J]. 数值计算与计算机应用, 1997, 18(1): 46-52.

HIGH RESOLUTION LARGE-PARTICLE FINITE VOLUME METHOD FOR 2-D UNSTRUCTURED TRIANGULAR MESH

  1. Song Songhe Li Yinfan(Institute of Computational Mathematice and Scientific/Engineering Computing, Academia Sinica)
  • Online:1997-01-20 Published:1997-01-20
Large-particle (FLIC) method, presented in 1960's, is a numerical method that be applied to solve unsteady flow. The computational scheme consists of two steps for each timemarch step: First, intermediate values are calculated for the velocities and energy, takinginto account the effects of acceleration caused by pressure gradients; Second transport effects are calculated. In this paper, we present a high resolution large-particle finite volumemethod for 2-D unstructured triangular mesh, the key idea of this method is monotonereconstruction of flow variables and solve "Riemann" problem in the first step. Finallythe result of the computation is satisfactory
()

[1] Harlow, F.H, Report LAMS-1956 , Los Alamos Sci. Lab, 1955.
[2] Rich, M, Report LAMS-2826, Los Alamo Sci. Lab, 1963.
[3] Gentry R.A et al ,J Comp. Phy., Vol . 1 , P. 87(1966).
[4] Be.(1971): 182.
[5] W.E. Johnson (1965): LA-04-495-AMC-116(x)
[6] Hageman L.J., Walsh;J.M, Report 3SR-350, Ballistic Research Lab.(1971).
[7] 李德元等,二维非定常流体力学数值方祛,科学出版社.(1987).
[8] Li Yinfan, Cao Yiming, Scientia Sinica (A) Vol 28, pp. 1024-1035(1985).
[9] Y.P. Li,E.P Qian.Lecture Notes in Physics Vol. 264, pp. 416- 421(1986).
[10] Van Leer,J. Comp Phy. Vol 32, p.101(1979).
[11] Nobuhiro Ukeguchi et al, Computrs and Fluids, Vol. 8, p. 251(1980).
[12]李荫藩,曹亦明,计算数学,Vol.3,p 129(1981)
[13] 徐国荣,计算数学, Vol 6 p. 429(1984).
[14] P. Colella,J. Comp . Phy, Vol. 87, pp. 171—200(1990).
No related articles found!
阅读次数
全文


摘要