]*>","")" /> C~k连续的保形插值2k+1次样条函数

• 论文 •    下一篇

C~k连续的保形插值2k+1次样条函数

王成伟   

  1. 北京服装学院
  • 出版日期:1997-01-20 发布日期:1997-01-20

王成伟. C~k连续的保形插值2k+1次样条函数[J]. 数值计算与计算机应用, 1997, 18(1): 1-7.

A C~k-SHAPE-PRESERVING INTERPOLATING SPLINE FUNCTION OF DEGREE 2k+1

  1. Wang Chengwei(Beijing Institute of Clothing Technology)
  • Online:1997-01-20 Published:1997-01-20
In this paper, a method for shape-preserving interpolation is presented. By insertingsome new knots, a C~k (k> 2) shape-preserving interpolating spline function of degree 2k+1is obtained. The errors of interpolating spline functions are estimated. The approximationaccuracy is o(h3) (when k > 2) and o(h2) (when k = 2).
()

[1]Randall L. Edelman A, Hyman J. M., Nonnegativity, Monotonicity, or Convexity-Preserving Cubic andQuintic Hermite Interpolation. Math. of Computation, 52:186(1989),471—494.
[2]文涛,单调光滑函数的保凸插值方法,计算数学, 2:4(1980), 299—306.
[3]方逵,Ck连续的保形插值2k次样条函数,数值计算与计算机应用,15:4(1994),299—307.
[4]方逵,张新建,保形C1三次样条插值方法,数值计算与计算机应用,15:3(1994),187—193。
[5]黄友谦,曲线曲面的数值表示与逼近,上海科技出版社,1984.
[6] P.M.谱伦特著,样条函数与变分方法,上海科技出版社, 1980.
No related articles found!
阅读次数
全文


摘要