• 论文 • 上一篇    下一篇

有限元线法

袁驷   

  1. 清华大学土木系
  • 出版日期:1992-04-20 发布日期:1992-04-20

袁驷. 有限元线法[J]. 数值计算与计算机应用, 1992, 13(4): 252-260.

THE FINITE ELEMENT METHOD OF LINES

  1. Yuan Si Dept. of Civil Engineering, Tsinghua University
  • Online:1992-04-20 Published:1992-04-20
有限元线法(Pinite Element Method of Lines,简称FEMOL)是一种新型的以常微分方程(Ordinary Differential Equation,简称ODE)求解器(Solver)为支撑软件的半解析方法.在该法中,我们首先利用有限元技术将控制微分方程半离散化为用结线函数表示的常微分方程组(ODEs),然后选用高质量的ODE求解程序直接求解(本文中采用COLSYS),得到满足用户预先指定的误差限的ODE解答,作为原问题的近似解.
Taking the 2D Poisson equation as a working example, this paper gives a description ofthe basic idea of a new type of semidiscrete method, the Finite Element Method of Lines(FEMOL). A class of parametric FEMOL elements are derived and numerical examples aregiven.
()

[1] U. Ascher, J. Christiansen, R. D. Russell, Collocation Software for Boundary-Value ODEs, ACM Trans.Math. Software, Vol. 7, No. 2, (June 1981) , pp. 209-2221.
[2] U. Ascher, J. Christiansen, R. D. Russell, Algorithm 569, COLSYS: Collocation Software for Boundary-Value ODEs
[D2] , ACM Trans. Math. Software, Vol. 7, No. 2, (June 1981) , pp. 223-229.
[3] 袁驷,介绍一个常微分方程边值问题求解通用程序--COLSYS,计算结构力学及其应用,7:2(1990) ,pp104-105。
[4] S. P. Timoshenko, J. N. Goodier; Theory of Elasticity, 3rd ed., Mc-Graw Hill. Book Co., New York,1970.
[5] D. Lefeber, Solving Problems with Singularities using Boundary Elements, Computational Mechanics Publications, 1989.
No related articles found!
阅读次数
全文


摘要