• 论文 • 上一篇    下一篇

散乱空间数据的G~1和G~2插值

姜寿山   

  1. 西北工业大学
  • 出版日期:1988-02-20 发布日期:1988-02-20

姜寿山. 散乱空间数据的G~1和G~2插值[J]. 数值计算与计算机应用, 1988, 9(2): 98-105.

G~1 AND G~2 INTERPOLATIONS TO 3D SCATTERED DATA

  1. Jiang Shou-shan Northwesten Polytechnic University
  • Online:1988-02-20 Published:1988-02-20
构造散乱空间数据(x_i,y_i,z_i)上的插值曲面问题在计算机辅助几何设计、地质勘探和气象等方面都有重要的实用意义。目前,解决这类问题的常用方法是在平面上对(x_i,y_i)作三角化网格,在每个三角形上定义分片插值曲面,相邻三角曲面片之间具有一定的连续阶。另一种方法是对给定的(x_i,y_i,z_i)建立空间局部坐标系,在各局部坐标系中构造插值曲面片,然后通过填充的方法构造整体光滑插值曲面。在空间三角网格上
A method for constructing piecewise surface interpolation to 3D scattered data(x_i, y_i, z_i) with G~1 and G~2 continuities is presented. This kind of surface has evi-dent geometric meaning and is easy to be adjusted. An example is given.
()

[1] JuerGen Kahmann, Continuity of Curvature Between Adjacent Bezier Patches,--Surfaces in CAGD (R E. Barnhill ed. 1983) 65.
[2] P. Little, Convex Combination Surface,同
[l]. 99.
[3] C. L. Lawson, Software for C~1 Surface interpolation,--Mathematical Softwate Ⅲ. (Rice ed. 1977) 160、
[4] Robert, E. Barnhill, Representation and Approximation of Surfaces, 同
[3] , 70.
[5] Tony D. DeRose Brian A. Barsky, An Intuitive Approach to Geometric Continuity for Parametric Curves and Surfaccs.--Computational Geomoth and Computer-Aided Design (Temple H. Fay and John N. Sonoosmith Compiled 1985) 71.
No related articles found!
阅读次数
全文


摘要