• 论文 • 上一篇    下一篇

正则线性迭代序列的最佳并行算法

侯洛明   

  1. 东北工学院
  • 出版日期:1988-02-20 发布日期:1988-02-20

侯洛明. 正则线性迭代序列的最佳并行算法[J]. 数值计算与计算机应用, 1988, 9(2): 86-92.

THE BEST PARALLEL ALGORITHM FOR SOLVING THE REGULAR LINEAR ITERATIVE SEQUENCE

  1. Hou Lo-ming Dongbei Institute of Technology
  • Online:1988-02-20 Published:1988-02-20
1.求解线代方程组 众所周知,Seidel迭代法(简称S迭代)是解线代方程组的一种经典方法。若令B为N阶方阵,X和b为N元向量,则S迭代将求解满足下式之向量X:
The iterative sequence {X~(l)}_1~∞ over a real domain or set is defined as the reg-ular linear iterative sequence RLI(N), in which X~(l)=C+△A*X(l)+?A*X~(l-1).In this paper, a best parallel algorithm, PRLI, for making out RLI(N) is presented,which is suitable to the SIMD system. Both speedup and efficiency of PRIL reachtheir theoritical limits (S_p=N, E_p=1). The algorithm is simple and can be usedto solve linear equations and data flow problems.
()

[1] 北京大学,吉林大学,南京大学合编,计算方法,人民教育出版社,1961.
[2] V. Conrad, Y. Wallach, lterativc Solution of Lincar Equations on a Parallel Processing System, IEEE Trang Comput. Vol. C-26, Sept. 1977, 838--847.
[3] K. Nagel, Losung Lineater Gleichungssytem nacb dem Gauss-Seidelverfahren auf dem Parallelrechner SMS201, Private Communication, 1978.
[4] D. J. Evcns, Parallel Processing Systems, Cambridge University Press, 1982, 333--334.
[5] R. Kober, C. Kuznia, SMS201--A Powerful Parallel Processor with 128 Microcomputers, Euromicro J. 5, I (1979) , 48--52.
[6] Y. Wallach & V. Conrad, On Block-Parallcl Methods for Solving Linear Equations, IEEE Trans. Comput.Vol.C-29, May, 1980, 354--359.
[7] 金成植,ALGOL 60编译方法(下),科学出版社,1983,6,666-667.
[8] L. J. Osterweil, L. D. Fosdick, DAVE--A Validation Error Detection and Documentation System for Fortran Programs, Tutorial Program Testing Techniques, Nov 8--11, 1977, COMPSAC77,
[9] 张鸣华,全局数据流分析,计算机学报,4(197) 81-89。
[10] D. J. Kuck. Parallel Processing of Ordinary Programs, Advances in Computers, Vol. 15, 135--136.
[11] 舒仁本,并行处理机系统的高效算法,计算机学报,3(1985) 119-127.
No related articles found!
阅读次数
全文


摘要