• 论文 • 上一篇    

用E方法与高精度计算解线性方程组

穆默   

  1. 中国科学院计算中心
  • 出版日期:1988-01-20 发布日期:1988-01-20

穆默. 用E方法与高精度计算解线性方程组[J]. 数值计算与计算机应用, 1988, 9(1): 59-64.

SOLVING LINEAR SYSTEMS WITH E-METHOD AND HIGH ACCURACY ARITHMETIC

  1. Mu Mo Computing Center, Academia Sinica
  • Online:1988-01-20 Published:1988-01-20
误差分析一直是数值计算中的一个重要的基本问题。Wilkinson提出的向后误差分析方法虽然能从理论上分析算法的数值稳定性,并给出误差的一些先验估计,但还不能解决实际计算解的误差估计问题。六十年代发展起来的区间方法,基于用一个区间来表示
This paper deals with solving linear algebraic systems with the so-called E-method andhigh accuracy arithmetic. An algorithm with a new kind of stopping criteria is recommen-ded and an error analysis is also contained.
()

[1] S. M. Rump, E. Kaucher, Small Bounds for tbe Solution of Systems of Linear Equations. Computing, Suppl.2, (1980) , 115--164.
[2] E. Kaucher, S. M. Rump, Generalized Iteration Methods for Bounds of tke Solution of Fixed Point OperatorEquations, Computing 24, (1980) , 131-137.
[3] E. Kaucher, S. M. Rump, E-Methods for Fixed Point Equations f(x)=x. Computing 28(1982) , 31--42.
[4] S. M. Rump, Solving Nonlinear Systems with Least Significant Bit Accuraey. Computing 29(1982) , 183-200.
[5] High-Accuracy Arithmetic Subroutine Library General Information Manual. IBM. (1983) .
[6] U. Kulish, W. Miranker, Computer Arithmetic in Theory and Practice. Academic Press (1981) .
[7] 移默,E方法与高精度计算,硕士论文,中国科学院计算中心(1984) .
[8] C. Alefeld, J. Herzberger, Introduction to interval computations. Academic Press, (1983) .
[9] R. S. Varga, Matrix Iterative Analysis. Prentice-Hall, Engle wood Cliffs. M. J. (1962) .
No related articles found!
阅读次数
全文


摘要