• 论文 • 上一篇    下一篇

不规则网格的差分方法

吴旭光   

  1. 河海大学计算中心
  • 出版日期:1988-01-20 发布日期:1988-01-20

吴旭光. 不规则网格的差分方法[J]. 数值计算与计算机应用, 1988, 9(1): 47-58.

A FINITE DIFFERENCE METHOD WITH IRREGULAR MESHES

  1. Wu Xu-guang Computing Center, Hehai University
  • Online:1988-01-20 Published:1988-01-20
在微分方程数值计算中,差分方法仍然是一个非常重要的手段,实践证明它是非常有效的。在与有限元同样精度的条件下,差分法的计算量要小得多,但差分方法有一明显的缺点,即对网格剖分要求比较严格,通常只能为直交网格。
A new finite-difference technique for the numerical solution of boundary value problemsfor partial differential equations in two space variables is described. Isoparametric finiteelements are used in a finite-difference context to derive difference approximations to spacederivatives on a locally curvilinear grid. With our isoparametric formula the accuracy of the methods with irregular meshes canbe raised. The approximate solution is proved to be with uniform second-order accurary.Calculation shows that these methods are efficient.
()

[1] L. Demkowicz, On Some Convergence Results for FDM with irregular mesh, Computer methods in applied mechanics and engineering Volume 42 No. 3 March 1984 343--356 (中译本在华水科技情报85年第四期).
[2] W. H. Freg, Flexible finite-difference stencils from isoparametric finite elements Ij. NME 11. (1977) 1653-1665.
[3] 苏煜城,吴启光,偏微分方程数值解法,科学出版社,1979.
[4] 武汉大学,山东大学计算数学教研室,计算方法,人民教育出版社,1979.
[5] 华东水利学院,弹性力学问题的有限元方法,水利电力出版社,1974.
[6] 吴旭光。等参数有限差分法,河海学报,NO.1(1987) .
No related articles found!
阅读次数
全文


摘要