• 论文 • 上一篇    下一篇

解周期抛物问题的伽略金方法

陈铭俊,肖梅东   

  1. 中山大学计算中心 ;中山大学计算中心
  • 出版日期:1988-01-20 发布日期:1988-01-20

陈铭俊,肖梅东. 解周期抛物问题的伽略金方法[J]. 数值计算与计算机应用, 1988, 9(1): 37-46.

THE CALERKIN METHOD FOR SOLVING A PERIODIC PARABOLIC PROBLEM

  1. Chen Ming-jun;Xiao Mei-dong Computer Center, Zhongshan University
  • Online:1988-01-20 Published:1988-01-20
的周期解u=u(x,t),此处f(t),g(t)为已知的以T为周期的周期函数。 我们说u(x,t)是周期的,这是针对t而言的,即
The intention of this paper is to employ the Galerkin method to solve a periodic parabolicproblem, taking the coordinate functions as B spline bases. Theoretical analysis and a nume-rical example are given. The orders of the errors of semi-discrete and completely discrete ap-proximate solutions are provided.
()

[1] G. J. Tee, An application of P-cyclic Matrices, Num. Math.6 (1964) ,143--158.
[2] M. R. Osborne, A note on the numerical solution of periodic problem, Numer. Math. 7 (1965) 155--158.
[3] 齐铁山,周期抛物问题的差分逼近,郑州大学学报,第1期(1984) .
[4] 齐铁山,周期抛物问题的一个数值解法,数值计算与计算机应用,6:2(1985) .
[5] C. Bernardi, Numerical approximation of a periodic linear parabolic problem, SIAM J. Numer. Anal. 19,(1982) , 1196--1207.
[6] M. H. Schultz, Spline Analysis, Prentice Hall, Inc., 1973 (有中译本).
[7] H. S. Carslaw, J. C Jacger, Conduction of Heat in Solids, Cambridge, C .U.P. (1959) .
No related articles found!
阅读次数
全文


摘要