• 论文 • 上一篇    下一篇

非对称儒氏翼型的数值设计与自动绘图

李正秀,冯振兴   

  1. 华中工学院 ;武汉大学
  • 出版日期:1985-03-20 发布日期:1985-03-20

李正秀,冯振兴. 非对称儒氏翼型的数值设计与自动绘图[J]. 数值计算与计算机应用, 1985, 6(3): 169-175.

THE NUMERICAL DESIGN AND AUTOMATIC PLOTTING OF NON-SYMMETRIC JOUKOWSKI AIRFOILS

  1. Li Zheng-xiu(Huazhong Institute of technology Wuhan, Hubei, China)Feng Zhen-xing(Wuhan University Wuhan, Hubei, China)
  • Online:1985-03-20 Published:1985-03-20
名词术语 d 变换圆圆心到“逆变换圆”圆心间距,即图2中的o_1o_2。 f 图中的oo_1 f_0 翼型弯度,f_0=2f F 翼型形状因子 L 翼型弦长 l 图2中的OA P 坐标原点到变换圆的距离,即图2中的oo_2。 r 变换圆上点的极坐标,即图2中的OM。 R_0 变换圆半径
In this paper, the algorithm of an iterative method for designing symmetric Joukowski airfoils is generalized to arbitrary non-symmetric Joukowski airfoils with specified chord, maximum thickness and bentness of the camber line. A numerical example is given using this algorithm. The corresponding FORTRAN program includes an automatic plotting scheme.
()

[1] L. M. Milne-Thomson, Theoretical Hydrodynamics, 5th edition, Macmillan and Co., London, 1968.
[2] J. E. Pitoniak, J. R. Shanebrook, A. C. Lemmo, An Iterative Method for the Design of Symmetrical Joukowski Airfoil ot Specified Chord and Maximum Thickness, Int. J. Num. Methods in Eng., Vol. 10, No. 4, 1976, pp. 723-730.
[3] H. Rouse, Advanced Mechanics of Fluid, John Wiley, New York, 1959.
No related articles found!
阅读次数
全文


摘要