• 论文 • 上一篇    下一篇

Kuhn算法的程序实施及数值试验

王则柯   

  1. 中山大学数学系
  • 出版日期:1981-03-20 发布日期:1981-03-20

王则柯. Kuhn算法的程序实施及数值试验[J]. 数值计算与计算机应用, 1981, 2(3): 175-181.

AN IMPLEMENTATION OF KUHN'S ROOTFINDING ALGORITHM FOR POLYNOMIALS AND RELATED DISCUSSIONS

  1. Wang Ze-ke Zhongshan University
  • Online:1981-03-20 Published:1981-03-20
H.W.Kuhn在代数基本定理的构造性证明的基础上,提出求多项式全部根的补偿轮迴算法.本文论述Kuhn算法的程序实施及数值试验结果.
According to a complementary pivoting procedure, H. W. Kuhn presented analgorithm that generates sequences to converge all the roots of a polynomial withcomplex coefficients. In this paper, we give a detailed analysis of Kuhn's algorithmand consider a practical strategy for computation. After giving an outline of theprogram structure and a flow chart, some numerical examples are presented andthe behavior of the algorithm is discussed. In addition, it is pointed out that thealgorithm remains effective for a wide class of transcendental equations.
()

[1] H. W. Kuhn, Mathematical Programming Study 1, North-Holland (1974) , 148-158.
[2] H. W. Kuhn, Fixed Points: Algorithms and Applications, Academic press, New York (1977) , 11-40.
[3] 414部队,北工大计算站,DJS-6机标准算法汇编(1975) ,221页、251页、243页.
[4] 陈永昌,计算方程重根的一个高阶迭代程序,计算数学,1(1979) ,289-292.
[5] 程锦松,多项式根的分布理论与代数方程解法,应用数学与计算数学,3(1966) ,225-236.
[6] 清华大学,北京大学,计算方法(上册),科学出版社,1974,208页.
No related articles found!
阅读次数
全文


摘要