• 论文 • 上一篇    下一篇

网格节点标号的最优化算法

薛希超,祝丕琦   

  1. 三机部六○一所 ;三机部六○一所
  • 出版日期:1981-01-20 发布日期:1981-01-20

薛希超,祝丕琦. 网格节点标号的最优化算法[J]. 数值计算与计算机应用, 1981, 2(1): 8-16.

AN OPTIMAL ALGORITHM FOR MESH NODE LABEL

  1. Xue Xi-chao;Zhu Pi-qi 601 Institute, Third Ministry of Machine-Building Industry
  • Online:1981-01-20 Published:1981-01-20
无论是变带宽法或是波前法,主元次序的优化对于更有效地利用矩阵的稀疏性来减缩计算机的计算量和存贮量,都起着关键性的作用.按照优化好了的消元次序,在消元过程中,系数矩阵的带宽、存贮或波前,相对来说都是最小的.在事先采用LU分解的高斯消去法中,求解方程组所需要的时间是和带宽的平方成比例的.当进行了节点标号优化以后,如果带宽减缩50%,就意味着解题时间减少75%.而当采用波前法以便小机器解大题目时,所解题目的大小,完全取决于波前的大小.如果波前减缩50%,就意味着解题
To reduce the computer storage and time in solution of the systems of large linearalgebraic equations, we have developed an improved algorithm of matrix bandwidth,storage or wave front minimization, which can increase convergence rate, and make pos-sible the convergence that can not be obtained by using some algorithms in some cases.
()

[1] R. Rosen, Matrix Bandwidth Minimization, Proceed. Nat. Cont. ACM, 23th. 1968.
[2] R. P. Tewarson, Comp. J., 10: 3(1967) , 300-305.
[3] F. A. Akyuz, S. Utku, AIAA. J., 7: 4(1968) , 728-730.
[4] H. R. Grooms, Algorithm for Matrix Bandwidth Reduction, J. Struct. Div., ASCE, 98, No. STI, 203-214, Jan. 1972. (译文:“应用数学与计算数学”,第2期,1979,4,尹文霸).
[5] 曹志浩,大型线性代数方程集的直接解法,复旦大学学报(自然科学版),第一期,1974.
[6] G. Akhras,G.Dhatt,An Automatic Node Relabeling Scheme for minimizang a Matrix or Network Bandwidth, Int. J. Num. Meth. Eng., V. 10: 4(1976) .
No related articles found!
阅读次数
全文


摘要