• 论文 • 上一篇    下一篇

基于PHG平台的非结构四面体网格欧拉方程间断有限元并行求解器

杜玉龙1, 徐凯文2,3, 赵昆磊2,3, 袁礼2,3   

  1. 1. 北京航空航天大学数学科学学院, 北京 100091;
    2. 中国科学院数学与系统科学研究院 计算数学所, 科学与工程计算国家重点实验室, 北京 100190;
    3. 中国科学院大学数学科学学院, 北京 100090
  • 收稿日期:2020-11-08 出版日期:2021-06-15 发布日期:2021-06-03
  • 基金资助:
    国家自然科学基金(91641107,91852116,12071470)和工信部专项(MJ-F-2012-04)资助.

杜玉龙, 徐凯文, 赵昆磊, 袁礼. 基于PHG平台的非结构四面体网格欧拉方程间断有限元并行求解器[J]. 数值计算与计算机应用, 2021, 42(2): 155-168.

Du Yulong, Xu Kaiwen, Zhao Kunlei, Yuan Li. A PARALLEL DGM SOLVER FOR THE EULER EQUATIONS ON UNSTRUCTURED TETRAHEDRAL GRIDS BASED ON THE TOOLBOX PHG[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 155-168.

A PARALLEL DGM SOLVER FOR THE EULER EQUATIONS ON UNSTRUCTURED TETRAHEDRAL GRIDS BASED ON THE TOOLBOX PHG

Du Yulong1, Xu Kaiwen2,3, Zhao Kunlei2,3, Yuan Li2,3   

  1. 1. School of Mathematical Sciences, Beihang University, Beijing 10091, China;
    2. LSEC and Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100090, China;
    3. School of Mathematics Sciences, University of Chinese Academy of Sciences, Beijing 100090, China
  • Received:2020-11-08 Online:2021-06-15 Published:2021-06-03
针对计算流体力学对高性能计算的需求,基于三维并行自适应有限元程序开发平台PHG (Parallel Hierarchical Grid)开发了在非结构四面体网格上求解可压缩流欧拉方程的间断有限元法并行求解器(Libdgphg库). 该求解器以C++函数库的形式实现数值方法中各项功能. 实施了模态基一次间断有限元, 采用低耗散的MLP(Multi-dimensional Limiting Process)限制器来抑制间断附近的数值振荡. 由于MLP限制器需要所有与当前单元共享顶点的邻近单元的信息, 模板较宽, 这给程序设计带来一定的困难. 我们通过引入辅助向量收集共享顶点的所有单元中的最大、最小单元积分平均值, 并归属到单元数据结构上, 从而利用PHG内在的通信机制实现MPI分区间的信息交换.通过几个数值算例测试了Libdgphg库的数值结果以及并行性能. 算例表明: 该求解器能得到理论精度阶和较高分辨率, 同时有良好的并行性能, 在千核测试中可达到60%以上的并行效率, 可用于流体问题的大规模计算.
We develop a C++ library libdgphg for solving the Euler equations on unstructured tetrahedral grids with a discontinuous Galerkin method (DGM), based on the 3D finite element code development toolbox PHG (Parallel Hierarchical Grid). The solver uses C++ classes for different modules of the DGM. We have implemented the modal base P1 DG method. The multi-dimensional limiting process (MLP) technique is applied to suppress numerical oscillations near discontinuities. To overcome the drawback of the non-compact stencil of the MLP limiter, we develop a strategy in which an auxiliary vector is introduced to collect the max-min values from cell averages of all vertex-sharing neighbour cells. Then, we distribute the max-min values in the auxiliary vector to the element object of PHG. In this way, we can realize the MPI communication automatically through the neighbour interface of PHG. Finally, we show that the MLP limiter can obtain expected accuracy and superior resolution, and the solver can attain 60 % parallel efficiency on 1024 cores.

MR(2010)主题分类: 

()
[1] Anderson J D, 姚朝辉, 周强(编译). 计算流体力学入门[M]. 清华大学出版社, 北京, 2010.
[2] Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Springer-Verlag, Berlin Heidelberg, 2009.
[3] Blazek J. Computational Fluid Dynamics: Principles and Applications[M]. Elsevier Science, Oxford, 2005.
[4] Shu C W. Discontinuous Galerkin methods: General approach and stability[J]. Numerical Solutions of Partial Differential Equations, Adv. Courses Math. CRM Barcelona, 2009, 149–201.
[5] Rivière Béatrice. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[M]. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2008.
[6] Cheng J and Shu C W. High order schemes for CFD: A Review[J]. 计算物理, 2009, 26(5): 633–655.
[7] Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin Methods for convection-dominated problems[J]. Journal of Scientific Computing, 2001, 16(3): 173–259.
[8] Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin method for conservation Laws V: Multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2): 199–224.
[9] 刘岩, 关振群, 张洪武, 张占群. 面向大规模科学计算的三维Delaunay快速插点算法[J]. 中国科学: 物理学力学天文学, 2012, 42(2): 192–198.
[10] Peraire J, Vahdati M, Morgan K and Zienkiewicz O C. Adaptive remeshing for compressible flow computations[J]. Journal of Computational Physics, 1987, 72(2): 449–466.
[11] Naddeia F, Plataa M L, Couailliera V and Coquel F. A comparison of refinement indicators for p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods[J]. Journal of Computational Physics, 2019, 376: 508–533.
[12] 杨雨薇, 虞佳磊, 张亚萍, 李幸刚, 邱晓朴. 基于非结构自适应网格的二维Euler方程数值求解方法研究[J]. 应用数学和力学, 2016, 37(9): 981–992.
[13] Yu X J, Wu D, Xu Y. Three dimensional discontinuous Galerkin methods for Euler equations on adaptive conforming meshes[J]. Comput. Phys. Commu., 2011, 182: 1771–1775.
[14] Conroya C J, Kubatko E J, Nappi A, et al.. HP discontinuous Galerkin methods for parametric, wind-driven water wave models[J]. Advances in Water Resources, 2018, 119: 70–83.
[15] 夏轶栋, 伍贻兆, 吕宏强, 宋江勇. 高阶间断有限元法的并行计算研究[J]. 空气动力学学报, 2011, 29(5): 537–541.
[16] Fujii K. Progress and future prospects of CFD in aerospace-wind tunnel and beyond[J]. Progress in Aerospace Sciences, 2005, 41(6): 455–470.
[17] Kroll N. ADIGMA-A European project on the development of adaptive higher-order variational methods for aerospace applications[P]. 47th AIAA Aerospace Sciences Meeting, 2009.
[18] Slotnick J, Khodadoust A, Alonso J, Darmofal D, et al.. CFD vision 2030 Study: A path to revolutionary computational aerosciences[P]. NASA Langley Research Center, 2013, NASA/CR-2014-218178.
[19] Park J S, Kim C. Multi-dimensional limiting process for finite volume methods on unstructured grids[J]. Computers & Fluids, 2012, 65: 8–24.
[20] Park J S, Kim C. Higher-order multi-dimensional limiting strategy for discontinuous Galerkin methods in compressible inviscid and viscous flows[J]. Computers & Fluids, 2014, 96: 377–396.
[21] Zhang F, Liu J, Chen B S. Modified multi-dimensional limiting process with enhanced shock stability on unstructured grids[J]. Computers & Fluids, 2018, 161: 171–188.
[22] Barth T J, Jespersen D C. The design and application of upwind schemes on unstructured meshes[P]. 27th AIAA aerospace sciences meeting, Reno RV, 1989, No. AIAA 89–0366.
[23] Touze C Le, Murrone A, and Guillard H. Multislope MUSCL method for general unstructured meshes[J]. Journal of Computational Physics, 2015, 284: 389–418.
[24] Sohn S I. A new TVD-MUSCL scheme for hyperbolic conservation laws[J]. Computers & Mathematics with Applications, 2005, 50: 231–248.
[25] Panagiotis T. Extended bounds limiter for high-order finite-volume schemes on unstructured meshes[J]. Journal of Computational Physics, 2018, 362: 69–94.
[26] Shu C W. TVB uniformly high-order schemes for conservation laws[J]. Mathematics of Computation, 1987, 49(179): 105–121.
[27] 张林波, 郑伟英, 卢本卓等. 并行自适应有限元软件平台\,PHG\,及其应用[J]. 中国科学: 信息科学, 2016, 46(10): 1442–1464.
[28] Zhang L B. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection[J]. Numerical Mathematics: Theory, Methods and Applications, 2009, 2(1): 65–89.
[29] 刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究[J]. 数值计算与计算机应用, 2015, 36(3): 166–184.
[30] 刘辉, 张林波. 自适应有限元常用标记策略及其在PHG中的并行实现[J]. 数值计算与计算机应用, 2009, 30(4): 315–320.
[31] Shu C W and Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439–471.
[32] Spiteri R J, Ruuth S J. A new class of optimal high-order strong-stability-preserving time discretization methods[J]. Siam Journal on Numerical Analysis, 2003, 40(2): 469–491.
[33] Luo H, Baum J D and Löhner R. A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids[J]. Journal of Computational Physics, 2008, 227: 8875–8893.
[34] 王承尧, 王正华, 杨晓辉. 计算流体力学及其并行算法[M]. 国防科技大学出版社, 长沙, 1999.
[35] Zhou T, Li Y F and Shu C W. Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods[J]. J. Sci. Comput., 2001, 16: 145–171.
[36] Dumbser M, Käser M, Titarev V A and Toro E F. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems[J]. Journal of Computational Physics, 2007, 226: 204–243.
[1] 李辰, 郭启龙, 孙东, 刘朋欣. 一种求解双曲守恒律方程的中心型WENO格式[J]. 数值计算与计算机应用, 2020, 41(3): 246-258.
[2] 邓维山, 徐进. 一种泊松-玻尔兹曼方程稳定算法的高效有限元并行实现[J]. 数值计算与计算机应用, 2018, 39(2): 91-110.
[3] 吴长茂, 杨超, 尹亮, 刘芳芳, 孙乔, 李力刚. 基于CPU-MIC异构众核环境的行星流体动力学数值模拟[J]. 数值计算与计算机应用, 2017, 38(3): 197-214.
[4] 宋梦召, 冯仰德, 聂宁明, 王武. 基于空位跃迁的KMC并行实现[J]. 数值计算与计算机应用, 2017, 38(2): 130-142.
[5] 刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究[J]. 数值计算与计算机应用, 2015, 36(3): 166-184.
[6] 刘辉, 崔涛, 冷伟. hp自适应有限元计算中一种新的自适应策略[J]. 数值计算与计算机应用, 2015, 36(2): 100-112.
[7] 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80.
[8] 段班祥, 朱小平, 张爱萍. 解线性互补问题的并行交替迭代算法[J]. 数值计算与计算机应用, 2011, 32(3): 183-195.
[9] 王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 29(4): 313-320.
[10] 姜金荣,迟学斌,陆忠华,刘洪利. 在MM5中实现IKAWA参数自适应选择[J]. 数值计算与计算机应用, 2007, 28(3): 215-220.
[11] 李永刚,欧阳洁,肖曼玉. 基于时间分解求解时间依赖问题的并行算法研究[J]. 数值计算与计算机应用, 2007, 28(1): 27-37.
[12] 余胜生,文元桥,周敬利. 隧道算法的分布式并行计算模型[J]. 数值计算与计算机应用, 2006, 27(4): 299-306.
[13] 曹建文,刘洋,孙家昶,姚继锋,潘峰. 大规模油藏数值模拟软件并行计算技术及在Beowulf系统上的应用进展[J]. 数值计算与计算机应用, 2006, 27(2): 86-95.
[14] 吕桂霞,马富明. 二维热传导方程有限差分区域分解算法[J]. 数值计算与计算机应用, 2006, 27(2): 96-105.
[15] 盛志强,刘兴平,崔霞. 对抛物方程使用新显格式的区域分解算法[J]. 数值计算与计算机应用, 2005, 26(4): 249-261.
阅读次数
全文


摘要