• 论文 • 上一篇    

矩阵填充硬阈值算法的两种修正

王俊霞, 王川龙, 申倩影   

  1. 太原师范学院数学系, 晋中 030619
  • 收稿日期:2019-08-03 发布日期:2021-06-03
  • 基金资助:
    国家自然科学基金(11371275);山西省自然科学基金(201801D121022);山西省教改项目(J2020280)和太原师范学院教改项目(JGLX1932)资助.

王俊霞, 王川龙, 申倩影. 矩阵填充硬阈值算法的两种修正[J]. 数值计算与计算机应用, 2021, 42(2): 126-133.

Wang Junxia, Wang Chuanlong, Shen Qianying. TWO MODIFIED ALGORITHMS FOR MATRIX COMPLETION USING HARD-THERESHODING ALGORITHM[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 126-133.

TWO MODIFIED ALGORITHMS FOR MATRIX COMPLETION USING HARD-THERESHODING ALGORITHM

Wang Junxia, Wang Chuanlong, Shen Qianying   

  1. Department of Mathematics, Taiyuan Normal University, Jinzhong 030619, China
  • Received:2019-08-03 Published:2021-06-03
本文提出了两种使用硬阈值进行矩阵填充的修正算法. 算法通过对迭代矩阵进行对角修正来完成矩阵填充, 其中第一种算法每步均修正, 第二种算法每两步修正一次, 并给出了算法的收敛性分析. 最后通过数值实验分别比较了两种算法与硬阈值算法填充的数值结果, 显示出了新算法的优越性.
In this paper, we propose two kinds of modified hard threshold algorithms for matrix completion. We aim to diagonally modify the iteration matrix to complete matrix completion. In the first one, matrix is modified at each step. In the second one, matrix is modified at every two steps. Convergence is discussed. Finally, by numerical experiments to compare two algorithms and hard threshold algorithm for matrix completion, we can see that new algorithms are more effective than hard threshold algorithm.

MR(2010)主题分类: 

()
[1] Bertalmio M, Sapiro G, Caselles V, et al. Image inpaiting[C]. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New York, ACM, 2000: 417–424.
[2] Tomasi C, Kanade T. Shape and motion from image streams under orthography: A factorization method[J]. Int J Comput Math Vision, 1992, 9: 137–154.
[3] Amit Y, Fink M, Srebro N, et al. Uncovering shared structures in multiclass classification[C]. Processings of the 24th International Conference on Machine Learing, New York, ACM, 2007: 17–24.
[4] Argyriou A, Evgeniou T. Mul-task feature learning[J]. Adv Neural Inf Process Syst, 2007, 19: 41–48.
[5] Beus H L. The Use of Information in Sorting[J]. ACM, 1970, 17(3): 482–495.
[6] M.Y.Yun. Design and Analysis of Predictive Sorting Algorithms[J]. Korean J.Comp. and Appl. Math, 1996, 3(1): 22–24.
[7] Blumensath T, Davies ME. Iterative thresholding for sparse approximation[J]. J Fourier Anal Appl 2008, 14: 629–654.
[8] Absil P A, Baker C G and Gallivan K A. Trust-Region Methods on Riemannian Manifolds[J]. 2001, 7(3): 303–330.
[9] Absil P A, Mahony R and Sepulchre R. Riemannian geometry of Grassmann manifolds with a view on algorithmic computation[J]. Acta Appl. Math. 2004(2): 199–220.
[10] Absil P A, Baker C G and Gallivan K A. Trust-region methods on Riemannian manifolds with applications in numerical linear algebra[C]. Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS2004), Leuven, Belgium, 2004: 5–9.
[11] Birkhof G., Varga R. Implicit alternating direction methods[J]. Transactions of the American Mathematical Society, 1959, 92(1): 13–24.
[12] Blumensath T, Davies M E. Iterative thresholding for sparse approximations[J]. Journal of Fourier Analysis Applications, 2008, 14(5): 629–654.
[13] Portilla J. Image restoration through l0 analysis-based sparse optimization in tight frames[C]. IEEE International Conference on Image Processing, 2009: 3909–3912.
[14] Blumensath T. Accelerated iterative hard thresholding[J]. Signal Processing, 2012, 92(3): 752–756.
[15] Goldfarb D, Ma S. Convergence of fixed point continuation algorithms for matrix rank minimization[J]. Foudations of Computational Mathematics, 2011,11(2): 183–210.
[16] Zhang M, Yang L, Huang Z H. Minimum n-rank approximation via iterative hard thresholding[J]. Applied Mathematics and Computation, 2015, (256): 860–875.
[17] 张雁峰, 范西岸, 尹志益等. 基于回溯的共轭梯度迭代硬阈值重构算法[J]. 计算机应用, 2018, 38(12): 3580–3583.
[1] 王川龙, 张江梅. 基于F-模的Hankel矩阵填充的保结构阈值算法[J]. 数值计算与计算机应用, 2018, 39(1): 60-72.
阅读次数
全文


摘要