全文下载排行

    一年内发表文章 | 两年内 | 三年内 | 全部 | 最近1个月下载排行 | 最近1年下载排行

    当前位置: 三年内
    Please wait a minute...
    图像反问题中的数学与深度学习方法
    董彬
    2019, 41 (4): 343-366.   DOI: 10.12286/jssx.2019.4.343
    摘要1767)      PDF (695KB)(1275)   
    我们生活在数字的时代,数据已经成为了我们生活中不可或缺的一部分,而图像无疑是最重要的数据类型之一.图像反问题,包括图像降噪,去模糊,修复,生物医学成像等,是图像科学中的重要领域.计算机技术的飞速发展使得我们可以用精细的数学和机器学习工具来为图像反问题设计有效的解决方案.本文主要回顾图像反问题中的三大类方法,即以小波(框架)为代表的计算调和分析法、偏微分方程(PDE)方法和深度学习方法.我们将回顾这些方法的建模思想和一些具体数学形式,探讨它们之间的联系与区别,优点与缺点,探讨将这些方法有机融合的可行性与优势.
    参考文献 | 相关文章 | 多维度评价
    一类融合逼近和插值的曲线细分
    马欢欢, 张莉, 唐烁, 檀结庆
    2019, 41 (4): 367-380.   DOI: 10.12286/jssx.2019.4.367
    摘要1121)      PDF (668KB)(732)   
    采用生成多项式为主的方法对一类融合逼近和插值三重细分格式的支撑区间、多项式生成、连续性、多项式再生及分形性质进行了分析,给出并证明了极限曲线 C k连续的充分条件.通过对融合型细分规则中参数变量的适当选择来实现对极限曲线的形状调整,从而衍生出具有良好性质的新格式,并将这类新格式与现有格式进行比较.数值实例表明这类新格式生成的极限曲线具有较好的保形性.
    参考文献 | 相关文章 | 多维度评价
    一类张量特征值互补问题
    罗刚, 杨庆之
    2019, 41 (4): 406-418.   DOI: 10.12286/jssx.2019.4.406
    摘要380)      PDF (422KB)(661)   
    矩阵特征值互补问题在力学系统领域有广泛的应用.在本文中,我们提出了一类特殊的四阶张量特征值互补问题,它是矩阵特征值互补问题的推广.我们对该特征值互补问题解的存在性,计算复杂度等性质进行了初步的研究.在一定条件下,我们建立了该互补问题同一类非线性约束优化问题的等价性联系,并由此提出了平移投影幂法来求解该特征值互补问题.
    参考文献 | 相关文章 | 多维度评价
    一种连续的谱聚类优化模型
    刘歆, 吴国宝, 张瑞, 张在坤
    2018, 40 (4): 354-366.   DOI: 10.12286/jssx.2018.4.354
    摘要444)      PDF (582KB)(659)   
    聚类与图的划分问题在大数据分析中有着重要的应用.这类问题一般被描述为组合优化问题,因此较难快速求解.本文设计了一种新的连续优化模型,并提出了一种块坐标下降算法,数值实验显示我们的新方法在求解聚类与图的划分问题上很有潜力.我们还更进一步分析了我们的连续优化模型和组合优化模型的关系.
    参考文献 | 相关文章 | 多维度评价
    二阶锥线性互补问题的广义模系矩阵分裂迭代算法
    李枝枝, 柯艺芬, 储日升, 张怀
    2019, 41 (4): 395-405.   DOI: 10.12286/jssx.2019.4.395
    摘要380)      PDF (380KB)(621)   
    通过将二阶锥线性互补问题转化为等价的不动点方程,介绍了一种广义模系矩阵分裂迭代算法,并研究了该算法的收敛性.进一步,数值结果表明广义模系矩阵分裂迭代算法能够有效地求解二阶锥线性互补问题.
    参考文献 | 相关文章 | 多维度评价
    弱有限元方法在线弹性问题中的应用
    张然
    2020, 42 (1): 1-17.   DOI: 10.12286/jssx.2020.1.1
    摘要577)      PDF (482KB)(595)   
    本文考虑弱有限元(简称WG)方法在线弹性问题中的应用.WG方法是传统有限元方法的推广,用于偏微分方程的数值求解.和传统有限元一样,它的基本思想源于变分原理.WG方法的特点是使用在剖分单元内部和剖分单元边界上分别有定义的分片多项式函数(即弱函数)作为近似函数来逼近真解,并针对弱函数定义相应的弱微分算子代入数值格式进行计算.除此之外,WG方法允许在数值格式中引进稳定子以实现近似函数的弱连续性.WG方法具有允许使用任意多边形或多面体剖分,数值格式与逼近函数构造简单,易于满足相应的稳定性条件等优点.本文考虑WG方法在求解线弹性问题中的应用.围绕线弹性问题数值求解中常见的三个问题,即:数值格式的强制性,闭锁性,应力张量的对称性介绍WG方法在线弹性问题求解中的应用.
    参考文献 | 相关文章 | 多维度评价
    类Hartree-Fock方程的数值方法
    林霖
    2019, 41 (2): 113-125.   DOI: 10.12286/jssx.2019.2.113
    摘要414)      PDF (531KB)(593)   
    本文的主要目的是介绍近年来大基组下的类Hartree-Fock方程数值求解的一些进展.类Hartree-Fock方程出现在Hartree-Fock理论和含杂化泛函的Kohn-Sham密度泛函理论中,是电子结构理论中一类重要的方程.该方程在复杂的化学和材料体系的电子结构计算中有广泛地应用.由于计算代价的原因,类Hartree-Fock方程一般只被用在较小规模的量子体系(含几十到几百个电子)的计算.从数学角度上讲,类Hartree-Fock方程是一个非线性积分-微分方程组,其计算代价主要来自于积分算子的部分,也就是Fock交换算子.通过发展和结合自适应压缩交换算子方法(ACE),投影的C-DⅡS方法(PC-DⅡS)方法,以及插值可分密度近似方法(ISDF),我们大大降低了杂化泛函密度泛函理论的计算代价.以含1000个硅原子的体系为例,我们将平面波基组下的杂化泛函的计算代价降至接近不含Fock交换算子的半局域泛函计算的水平.同时,我们发现类Hartree-Fock方程的数学结构也为一类特征值问题的迭代求解提供了新的思路.
    参考文献 | 相关文章 | 多维度评价
    被引次数: CSCD(1)
    非定常对流扩散方程保正格式解的存在性
    张燕美, 兰斌, 盛志强, 袁光伟
    2019, 41 (4): 381-394.   DOI: 10.12286/jssx.2019.4.381
    摘要380)      PDF (927KB)(578)   
    本文发展了非定常对流扩散方程的非线性保正格式.该格式为单元中心型有限体积格式,保持局部通量的守恒性,适用于任意星形多边形网格,本文证明了该离散格式解的存在性,并给出数值结果,表明该格式具有二阶精度.
    参考文献 | 相关文章 | 多维度评价
    矩阵形式二次修正Maxwell-Dirac系统的多尺度算法
    付姚姚, 曹礼群
    2019, 41 (4): 419-439.   DOI: 10.12286/jssx.2019.4.419
    摘要324)      PDF (4591KB)(577)   
    带二次修正项的Dirac方程在拓扑绝缘体、石墨烯、超导等新材料电磁光特性分析中有着十分广泛的应用.本文工作的创新点有:一是首次提出了矩阵形式带有二次修正项的Dirac方程,它是比较一般的数学框架,涵盖了上述材料体系很多重要的物理模型,具体见附录A;二是针对上述材料体系的电磁响应问题,提出了有界区域Weyl规范下具有周期间断系数矩阵形式带二次修正项Maxwell-Dirac系统的多尺度渐近方法,结合Crank-Nicolson有限差分方法和自适应棱单元方法,发展了一类多尺度算法.数值试验结果验证了多尺度渐近方法的正确性和算法的有效性.
    参考文献 | 相关文章 | 多维度评价
    复合凸优化的快速邻近点算法
    郦旭东
    2020, 42 (4): 385-404.   DOI: 10.12286/jssx.2020.4.385
    摘要554)      PDF (598KB)(576)   
    在大数据时代,随着数据采集手段的不断提升,大规模复合凸优化问题大量的出现在包括统计数据分析,机器与统计学习以及信号与图像处理等应用中.本文针对大规模复合凸优化问题介绍了一类快速邻近点算法.在易计算的近似准则和较弱的平稳性条件下,本文给出了该算法的全局收敛与局部渐近超线性收敛结果.同时,我们设计了基于对偶原理的半光滑牛顿法来高效稳定求解邻近点算法所涉及的重要子问题.最后,本文还讨论了如何通过深入挖掘并利用复合凸优化问题中由非光滑正则函数所诱导的非光滑二阶信息来极大减少半光滑牛顿算法中求解牛顿线性系统所需的工作量,从而进一步加速邻近点算法.
    参考文献 | 相关文章 | 多维度评价
    电子结构计算的数值方法与理论
    戴小英
    2020, 42 (2): 131-158.   DOI: 10.12286/jssx.2020.2.131
    摘要665)      PDF (690KB)(553)   
    第一原理电子结构计算已成为探索与研究物质机理、理解与预测材料性质的重要手段和工具.虽然第一原理电子结构计算取得了巨大的成功,但是如何利用高性能计算机又快又好地计算大规模体系,如何从数学角度理解电子结构模型的合理性与计算的可靠性和有效性,依然充满各种挑战.基于密度泛函理论的第一原理电子结构计算的核心数学模型为Kohn-Sham方程或相应的Kohn-Sham能量泛函极小问题.近年来,人们分别从非线性算子特征值问题的高效离散及Kohn-Sham能量泛函极小问题的最优化方法设计两个方面对电子结构计算的高效算法设计及分析展开了诸多研究.本文重点介绍我们小组在电子结构计算的方法与理论方面的一些进展,同时简单介绍该领域存在的困难与挑战.
    参考文献 | 相关文章 | 多维度评价
    带乘性噪声的空间分数阶随机非线性Schrödinger方程的广义多辛算法
    刘子源, 梁家瑞, 钱旭, 宋松和
    2019, 41 (4): 440-452.   DOI: 10.12286/jssx.2019.4.440
    摘要404)      PDF (1466KB)(531)   
    带乘性噪声的空间分数阶随机非线性Schrödinger方程是一类重要的方程,可应用于描述开放非局部量子系统的演化过程.该方程为一个无穷维分数阶随机Hamilton系统,且具有广义多辛结构和质量守恒的性质.针对该方程的广义多辛形式,在空间上采用拟谱方法离散分数阶微分算子,在时间上则采用隐式中点格式,构造出一类保持全局质量的广义多辛格式.对行波解和平面波解等进行数值模拟,结果验证了所构造格式的有效性和保结构性质,时间均方收敛阶约在0.5到1之间.
    参考文献 | 相关文章 | 多维度评价
    子空间聚类的重建模型及其快速算法
    夏雨晴, 张振跃
    2019, 41 (1): 1-11.   DOI: 10.12286/jssx.2019.1.1
    摘要395)      PDF (486KB)(526)   
    有限样本的子空间数据聚类建模及其大规模计算是子空间学习面临的主要问题.现有的大多数模型都不适合大规模计算.本文提出了一个新的优化模型,结合谱投影反馈和辅助信息优化.在提升模型的学习能力的同时,采用高效的分片符号更新算法,可以适合大规模计算.我们用较大规模的模拟例子和实际例子,分析检验了新的优化模型及其快速算法的优于现有其他模型与算法的有效性.
    参考文献 | 相关文章 | 多维度评价
    无中心优化的算子分裂方法
    印卧涛
    2019, 41 (3): 225-241.   DOI: 10.12286/jssx.2019.3.225
    摘要732)      PDF (552KB)(506)   
    在某些多智能体系统中,由于受到通讯等因素的限制,单个智能体只能进行本地计算,再与相邻智能体交换数据.与传统的并行和分布式计算不同,这种数据交换方式不再使用中心节点或者共享内存,而仅限于相邻节点之间.这种通过局部数据交换而实现全网目标的方式叫做无中心计算.比如,从任意的多个数开始,所有智能体通过不断地计算其局部平均,就都能收敛到这些数的平均值.无中心计算有不易形成通讯和计算瓶颈的优点,更适合分布的节点,因此受到一些应用的欢迎.
    本文介绍求解一致最优化问题的若干无中心算法.一致最优化问题的目标是全网所有节点的变量收敛到同一个、并使所有目标函数之和最小的值.我们可以通过推广求平均的无中心方法去实现这个目标,但是得到算法比普通(有中心的)优化算法收敛得更慢,有阶数差距.近年来,一些新的无中心算法弥补了这个阶数差距.本文采用算子分裂的统一框架,以比这些算法原文更为简单的形式介绍这些方法.
    参考文献 | 相关文章 | 多维度评价
    深度学习中残差网络的随机训练策略
    孙琪, 陶蕴哲, 杜强
    2020, 42 (3): 349-369.   DOI: 10.12286/jssx.2020.3.349
    摘要231)      PDF (1584KB)(485)   
    为了有效提高深度学习模型在实际应用场景中的泛化能力,近年来工业界和学术界对神经网络训练阶段所采用的加噪技巧给予了高度关注.当网络模型架构中的待求参数固定时,修正方程的思想可以被用来刻画随机训练策略下数据特征的传播过程,从而看出在恰当位置添加剪枝层后的残差网络等价于随机微分方程的数值离散格式.建立这两者间的对应关系使得我们可以将残差网络的随机训练过程与求解倒向柯尔莫哥洛夫方程的最优控制问题联系起来.该发现不仅使得人们可以从微分方程及其最优控制的角度来研究加噪技巧所带来的正则化效应,同时也为构建可解释性强且有效的随机训练方法提供了科学依据.本文也以二分类问题作为简例来对上述观点做进一步的阐述和说明.
    参考文献 | 相关文章 | 多维度评价
    中国计算数学奠基人冯康
    2020, 42 (3): 258-259.   DOI: 10.12286/jssx.2020.3.258
    摘要159)      PDF (9198KB)(471)   
    相关文章 | 多维度评价
    稀疏线性规划研究
    陈圣杰, 戴彧虹, 徐凤敏
    2018, 40 (4): 339-353.   DOI: 10.12286/jssx.2018.4.339
    摘要557)      PDF (433KB)(443)   
    稀疏线性规划在金融计算、工业生产、装配调度等领域应用十分广泛.本文首先给出稀疏线性规划问题的一般模型并证明问题是NP困难问题;其次采用交替方向乘子法(ADMM)求解该问题;最后证明了算法在近似问题上的收敛性.数值实验表明,算法在大规模数值算例上的表现优于已有的混合遗传算法;同时通过对金融实例的计算验证了算法及模型在稀疏投资组合问题上的有效性.
    参考文献 | 相关文章 | 多维度评价
    前言
    韩德仁, 徐凤敏, 杨周旺
    2018, 40 (4): 337-338.   DOI: 10.12286/jssx.2018.4.337
    摘要305)      PDF (204KB)(432)   
    相关文章 | 多维度评价
    时间延迟扩散-波动分数阶微分方程有限差分方法
    王志强, 文立平, 朱珍民
    2019, 41 (1): 82-90.   DOI: 10.12286/jssx.2019.1.82
    摘要542)      PDF (453KB)(417)   
    本文提出求解时间延迟扩散-波动分数阶微分方程有限差分方法,方程中对时间的一阶导函数用 α阶(0 < α < 1) Caputo分数阶导数代替.文章中利用Lubich线性多步法对分数阶微分进行差分离散,且文章利用分段区间证明该方法是稳定的,且利用数值实验加以验证.
    参考文献 | 相关文章 | 多维度评价
    单调算子理论与分裂算法
    郭科, 韩德仁
    2018, 40 (4): 418-435.   DOI: 10.12286/jssx.2018.4.418
    摘要682)      PDF (418KB)(403)   
    文主要回顾了单调算子理论与分裂算法的基本概念和结果,重点介绍Forward-Backward分裂算法和Douglas-Rachford分裂算法的收敛性理论及应用.同时,也介绍了这些方法处理非凸优化问题的最新进展以及一些前沿和热点问题.最后提出了几个未来可以继续研究的方向.
    参考文献 | 相关文章 | 多维度评价