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Abstract In this paper we give a geometric interpretation of the notion of the horizontal mean

curvature which is introduced by Danielli–Garofalo–Nhieu and Pauls who recently introduced sub-

Riemannian minimal surfaces in Carnot groups. This will be done by introducing a natural nonholo-

nomic connection which is the restriction (projection) of the natural Riemannian connection on the

horizontal bundle. For this nonholonomic connection and (intrinsic) regular hypersurfaces we introduce

the notions of the horizontal second fundamental form and the horizontal shape operator. It turns out

that the horizontal mean curvature is the trace of the horizontal shape operator.
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1 Introduction and Preliminaries
In [1] Garofalo and Nhieu introduced the sub-Riemannian version of the Plateau problem (sub-
Riemannian minimal surface problem). Roughly speaking, this generalization of the classical
Plateau problem is based on an appropriate sub-Riemannian version of perimeter generalizing
the classical one. The existence of the generalized solutions (H-Caccioppoli sets or H-finite
perimeter sets) of the Plateau problem in Carnot–Carathéodory (CC) manifolds was established
in [1]. A sub-Riemannian manifold (M, Δ, 〈·, ·〉c) is a smooth manifold M with a distribution
Δ (a subbundle of the tangent bundle TM) which is (locally) generated by vector fields X =
{X1, . . . , Xk} and is endowed with a fiberwise inner product 〈·, ·〉c (sub-Riemannian metric),
(〈·, ·〉c is usually realized as the restriction on Δ of a Riemannian metric 〈·, ·〉 of M), such
that X = {X1, . . . , Xk} is orthonormal. A particularly interesting class of sub-Riemannian
manifolds are Carnot groups. We recall that a Carnot group G is a connected, simply connected
Lie group whose Lie algebra G admits the grading G = V1

⊕ · · ·⊕Vl, with [V1, Vi] = Vi+1, for
any 1 ≤ i ≤ l − 1 and [V1, Vl] = 0. Let {e1, . . . , en} be a basis of G with n =

∑l
i=1 dim(Vi).

Let Xi(g) = (Lg)∗ei for i = 1, . . . , k := dim(V1) where (Lg)∗ is the differential of the left
translation Lg(g′) = gg′ and let Yi(g) = (Lg)∗ei+k for i = 1, . . . , n − k. We call the system
of left-invariant vector fields HG := V1 = span{X1, . . . , Xk} the horizontal bundle of G and
its horizontal fiber at x is denoted by HGx. We will denote by Cr(Ω, HG) the set of all
Cr smooth sections defined in the open set Ω. We will fix a Riemannian metric 〈·, ·〉 on G
such that {X1(g), . . . , Xk(g), Y1(g), . . . , Yn−k(g)} is an orthonormal basis of TgG for any g ∈ G
(its restriction on HG is a canonical sub-Riemannian metric 〈·, ·〉c). By the Baker–Hausdorff–
Campbell formula we can identify G with R

n (G ) with a group law. We will denote the
homogeneous dimension of G by Q :=

∑l
i=1 i dim(Vi).
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Intrinsic regular hypersurfaces and horizontal mean curvature are two important notions in
the study of the sub-Riemannian minimal surface problem. About the former, in their recent
papers [2–5] Franchi, Serapioni and Serra Cassano studied some basic properties and gave
structure theorems for sets of H-finite perimeter in Carnot groups.
Definition 1.1 (Intrinsic regular hypersurface [3]) Let G be a Carnot group. We say that
S ⊂ G is an intrinsic regular hypersurface if, for every x ∈ S, there exist a neighborhood U of
x and a function f ∈ C1

H(U ) such that
S ∩ U = {y ∈ U : f(y) = 0} and ∇Hf(y) 	= 0 for y ∈ U ,

where Cr
H(U ) denotes the set of all continuous functions f in U such that Xi1Xi2 · · ·Xij

f
are continuous for any i1, . . . , ij ∈ {1, . . . , k} and j = 1, . . . , r; ∇Hf := (X1f, . . . , Xkf) is the
horizontal gradient of f identified with a section of HG, ∇Hf(x) =

∑k
i=1 Xif(x)Xi ∈ HGx.

Here Xif is understood in the distribution sense.
Note that Cr(U ) ⊂ Cr

H(U ), where Cr(U ) is the space of Euclidean r-order smooth
functions. In general Cr

H functions are not Cr. If an intrinsic regular hypersurface S is C1

(i.e. the defining functions are C1), there are no characteristic points in S. Here by a char-
acteristic point on a smooth hypersurface S we mean a point x whose tangent space TxS
contains the horizontal fiber HGx at x. In other words, if nE(x) is the Euclidean normal
vector of S at x, x is a characteristic point if and only if the horizontal normal of S at x
nH (x) :=

∑k
i=1〈nE(x), Xi(x)〉EXi(x) ∈ HGx is vanishing, where 〈·, ·〉E is the Euclidean met-

ric, see Remark 3.3 and Lemma 4.1. So all smooth hypersurfaces which do not contain char-
acteristic points are intrinsic regular hypersurfaces. But most smooth hypersurfaces contain a
small subset of characteristic points. The smallness means that the set C(S) of all character-
istic points of a smooth hypersurface S has H Q−1 (the Q − 1 dimension Hausdorff measure
with respect to the CC metric) or Riemannian surface measure zero (even more smaller if S is
smooth enough), see [6]. Conversely, C1

H hypersurfaces may not possess any differentiability in
the usual sense. For technical reasons and simplicity, from the next section we will assume that
all intrinsic hypersurfaces are (locally) smooth (C1 at least).

Franchi, Serapioni and Serra Cassano characterized H-finite perimeter sets in Carnot groups
of step two. They showed that the reduced boundary of any H-finite perimeter set is H-
rectifiable, i.e., up to a subset of H Q−1 measure zero it is the union of countable compact
subsets each of which is contained in an intrinsic regular hypersurface. This result is one of
the most exciting results in the developing the geometric measure theory in the setting of
sub-Riemannian geometry.

As for horizontal mean curvature of a hypersurface, Pauls [7] and Danielli–Garofalo–Nhien
[8] independently suggested two equivalent notions. We recall only the one in [8], see also [9].
Let x be a noncharacteristic point of a C2 smooth hypersurface S whose defining function is
f (i.e. f ∈ C2(G), S = {x ∈ G : f(x) = 0} = ∂Ω where Ω = {x ∈ G : f(x) < 0} and
∇f =

∑n
i=1

∂f
∂xi

∂
∂xi

	= 0 in S). By continuity there exists a neighborhood U of x such that

U ∩ S is intrinsic regular. Then the unit horizontal normal vector is V (y) =
∑k

i=1 Vi(y)Xi

where Vi(y) = Xif(y)
|∇Hf(y)| for y ∈ U .

Definition 1.2 (Horizontal mean curvature [8]) Let x, S, f and V be as above. Then the
horizontal mean curvature of S at x is defined as

HX(x) :=
1

Q − 1

k∑
i=1

Xi(Vi(x)) =
1

Q − 1

k∑
i=1

Xi

{
Xif(x)
|∇Hf(x)|

}
. (1.1)

We first remark that HX does not depend on the choice of defining functions. This follows
from the fact that if f1, f2 are two defining functions of S, then there exists a C1 function
h such that f1 = hf2 (recalling Xif = 〈∇f, Xi〉E). Definition 1.2 is just an analogue of the
definition of the mean curvature of smooth hypersurfaces in Euclidean spaces R

n, see e.g. [10].
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In fact, following the lines of Chapters 1 and 2 of [10], one can develop in Carnot groups an
analogue of the calculus in Euclidean domains. However this generalization is only from the
viewpoint of analysis. From Definition 1.2, it does not seem to imply any geometry meaning.
This note is devoted to giving a geometric interpretation of the horizontal mean curvature. We
will introduce in the horizontal bundle HG a nonholonomic connection—horizontal connection
D, see Section 2 for details. The notion of a nonholonomic connection dates back to Cartan’s
address at the 1928 International Congress of Mathematicians at Bologna, Italy, see [11], [12]
and [13]. Because of the special structure of Carnot groups it turns out that the nonholonomic
connection can be uniquely determined by the following formula DXY =

∑k
i=1 X〈Y, Xi〉Xi for

any X, Y ∈ C1(Ω, HG), and it is the restriction and projection on the horizontal bundle HG
of the Levi–Civita connection with respect to 〈·, ·〉. With the connection D, we can define the
horizontal second fundamental form and horizontal shape operator on smooth intrinsic regular
hypersurfaces. We define our horizontal mean curvature as the trace of the horizontal shape
operator. We prove that this definition coincides with Definition 1.2.

The paper is organized as follows. In Section 2 we introduce a nonholonomic connection on
Carnot groups. Some properties of the nonholonomic connection are developed. The horizontal
second fundamental form for smooth intrinsic regular hypersurfaces is defined in Section 3. The
theorem which states that the horizontal mean curvature is the trace of the horizontal shape
operator is the main result of this paper. In the last section, we give some comments and
possible extensions.

2 Horizontal Connection in Carnot Groups
As in the last section, G identified with R

n is a Carnot group with horizontal bundle HG =
span{X1, . . . , Xk}. Fix the inner product 〈·, ·〉 in TG such that the system of left-invariant
vector fields {X1, . . . , Xk, Y1, . . . , Yn−k} is an orthonormal basis of TG. We follow Cartan [11]
to give the definition of the nonholonomic connections on G.
Definition 2.1 (Nonholonomic connections) Let Ω be an open set of G. A nonholonomic
connection on HG is an operator

D̃ : C1(Ω, HG) × C1(Ω, HG) → C(Ω, HG)
satisfying :

1 D̃XY is R-linear in both arguments;
2 D̃XY is C1(Ω)-linear in the argument of X;
3 The Leibniz rule holds; D̃X(fY ) = (Xf)Y + fD̃XY,

4 D̃ is compatible with respect to 〈·, ·〉c, that is,

X〈Y, Z〉c = 〈D̃XY, Z〉c + 〈Y, D̃XZ〉c for any X, Y, Z ∈ C1(Ω, HG). (2.1)

It is easily seen that any nonholonomic connection D̃ can be (uniquely) written as

D̃XY =
k∑

i=1

X(Y i)Xi +
k∑

i,j=1

Y iω̃j
i (X)Xj for any X, Y =

k∑
i=1

Y iXi ∈ C1(Ω, HG),

with ω̃j
i = −ω̃i

j , i, j = 1, . . . , k. It can be verified in a routine way that D̃XY (x) depends only
on the value of X at x and the evaluation of Y in a neighborhood of x.

There is a natural nonholonomic connection

DXY =
k∑

i=1

X(Y i)Xi

on HG. That is, we choose Γl
ij := ωl

i(Xj) ≡ 0, i, j, l = 1, . . . , k. We call D the horizontal
connection on G. We can regard D as the natural generalization of the Euclidean (flat) connec-
tion. In fact, if G is commutative, that is, G is Euclidean, then D is just the usual directional
derivative in Euclidean spaces.



704 Tan K. H. and Yang X. P.

Theorem 2.2 D is the restriction and projection on HG of the Levi–Civita connection ∇
with respect to 〈·, ·〉 in the sense that for any X, Y ∈ C1(Ω, HG), DXY is the projection of
∇XY on HG.
Proof Let ∇ be the Levi–Civita connection with respect to the Riemannian metric 〈·, ·〉. From
Cozhul’s identity

〈∇UV, W 〉 =
1
2
(U〈V, W 〉 + V 〈W, U〉 − W 〈U, V 〉 − 〈V, [U, W ]〉 − 〈W, [V, U ]〉 + 〈U, [W, V ]〉),

for any U, V, W ∈ C2(Ω, TG), we have

〈∇Xi
Xj , Xl〉 =

1
2
(〈Xi, [Xl, Xj ]〉 − 〈Xj , [Xi, Xl]〉 − 〈Xl, [Xj , Xi]〉) = 0,

for i, j, l = 1, . . . , k, since X1, . . . , Xk, Y1, . . . , Xn−k is an orthonormal basis with respect to
〈·, ·〉 and [Xi, Xj ] ∈ V2 for any i, j = 1, . . . , k. Thus the connection coefficients for ∇ Γl

ij =
〈∇Xi

Xj , Xl〉 = 0 when i, j, l = 1, . . . , k, and hence the assertion follows.
Corollary 2.3 D is the unique nonholonomic connection with the symmetry

DXY = DY X for any X, Y ∈ HG(Ω), (2.2)

where HG(Ω) is the set of all left-invariant vector fields with domain Ω.
Proof We first prove that the connection D is symmetric, i.e., (2.2) holds. In fact, by Theo-
rem 2.2 and the symmetry of ∇, i.e., ∇UV −∇V U = [U, V ] for any U, V ∈ C2(Ω, TG), we have
for any X, Y ∈ C1(Ω, HG),

DXY − DY X =
k∑

i=1

〈∇XY −∇Y X, Xi〉Xi =
k∑

i=1

〈[X, Y ], Xi〉Xi. (2.3)

Now for X, Y ∈ HG(Ω), DXY = DY X follows from the fact that [X, Y ] ∈ V2.
Assume D̃ is a nonholonomic connection on HG such that (2.2) holds. Writing the com-

patibility equation (2.1) three times with X, Y, Z ∈ HG(Ω) cyclicly permuted, we have

X〈Y, Z〉c = 〈D̃XY, Z〉c + 〈Y, D̃XZ〉c,
Y 〈Z, X〉c = 〈D̃Y Z, X〉c + 〈Z, D̃Y X〉c,
Z〈X, Y 〉c = 〈D̃ZX, Y 〉c + 〈X, D̃ZY 〉c.

Adding the first and the second equations, then subtracting the third one, using the fact that
DZY = DY Z, DXY = DY X and DZX = DXZ, we get Cozhul’s type formula

〈D̃XY, Z〉c =
1
2
(X〈Y, Z〉c + Y 〈Z, X〉c − Z〈X, Y 〉c).

From the last equation we conclude that Γ̃l
ij = ω̃l

i(Xj) = 〈D̃Xj
Xi, Xl〉c = 0 for i, j, l = 1, . . . , k.

That is, D̃ = D.
Remark 2.4 In general, DXY = DY X does not hold for X, Y ∈ C1(Ω, HG). The reason
is that [X, Y ] may have horizontal components unless X, Y are left-invariant vector fields, see
(2.3). Let [X, Y ]H =

∑k
i=1〈[X, Y ], Xi〉Xi. Then it is easily seen from the proof of Corollary 2.3

that D is the unique nonholonomic connection such that

DXY − DY X = [X, Y ]H , (2.4)
for any X, Y ∈ C1(Ω, HG). The observation of equation (2.4) is fundamental in the proof of
the symmetry of the horizontal second fundamental form. In general, for any nonholonomic
connection D̃, it is natural to define on the horizontal bundle HG a torsion tensor

T (X, Y ) = D̃XY − D̃Y X − [X, Y ]H ,

and a curvature tensor

C(X, Y ) = D̃XD̃Y − D̃Y D̃X − D̃[X,Y ]H ,



Horizontal Connection and Horizontal Mean Curvature 705

for any X, Y ∈ C1(Ω, HG). However these notions do not seem to be useful for our purpose.
We will not explore them further.

We recall that the horizontal divergence for X =
∑k

i=1 XiXi ∈ C1(Ω, HG) is

divHX =
k∑

i=1

Xi(Xi).

It happens that divHX can be defined using the horizontal connection in the usual way:

divHX = trace〈·,·〉c
(Y → DY X) :=

k∑
i=1

〈Xi, DXi
X〉. (2.5)

From (2.5) and Theorem 2.2 we have immediately:
Corollary 2.5 If X ∈ C1(Ω, HG), then divHX =divX, where divX is the usual divergence
computed with respect to the Levi–Civita connection ∇ of 〈·, ·〉.
3 Horizontal Mean Curvature of Intrinsic Regular Hypersurfaces:

Another Definition
In this section we follow the steps of procedure in Riemannian geometry (see e.g. [14]) of
defining mean curvatures on submanifolds to give a geometric definition of horizontal mean
curvatures on intrinsic regular hypersurfaces. In this process we should temporarily forget
some concepts in Riemannian geometry such as the usual tangent plane, normal vector, and
observe any horizontal (sub-Riemannian) object as standing in the horizontal bundle. In this
sense the horizontal connection D provides us with a natural bridge: we can differentiate
horizontal vector fields along horizontal vectors, and hence we can define the horizontal second
fundamental form II(X, Y ) on intrinsic regular hypersurfaces. The concept of horizontal tangent
planes (bundles) (see Definition 3.1) is of paramount importance for our purpose. The fact that
the horizontal tangent bundle of a smooth intrinsic regular hypersurface is the projection onto
the horizontal bundle of its Riemannian tangent bundle, together with the symmetry of the
horizontal connection D (see Equation (2.4)) implies that II(X, Y ) is symmetric. Thus we can
define the horizontal mean curvature as the trace of the horizontal shape operator associated
with II.

We first give the definition of the horizontal tangent plane of a smooth intrinsic regular
hypersurface, which plays a pervasive role in this section.
Definition 3.1 (Horizontal tangent plane) Let S be a C2 intrinsic regular hypersurface.
Then any x ∈ S is not characteristic and hence there exists a horizontal normal (see p. 2)
nH (x) at x (nH (x) is obviously C1 smooth). We define the horizontal tangent plane TH

x S at
x ∈ S as

TH
x S = {v ∈ HGx : 〈v, nH (x)〉c = 0}

and call
TH S :=

⋃
x∈S

TH
x S

the horizontal tangent bundle on S.
Since HGx is a k-dimensional space, TH

x S is a (k−1)-dimensional subspace of HGx. That
is,

HGx = TH
x S

⊕
nH (x). (3.1)

By the following proposition, TH
x S has a significant geometric meaning.

Proposition 3.2 (Blow-up theorem [4]) Let G be a Carnot group of step 2 and S be a C1

smooth intrinsic regular hypersurface such that S ⊂ ∂E for a C1 smooth, open set E in G.
For x ∈ S and r > 0, setting Er,x := {y ∈ G : x.δr(y) ∈ E} = δ 1

r
Lx−1E and T+(x) := {y ∈
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G : 〈πxy, nH (x)〉c ≥ 0}, T (x) := {y ∈ G : 〈πxy, nH (x)〉c = 0}, where πxy =
∑k

i=1 yiXi(x) for
y = (y1, . . . , yk, . . . , yn), we have

lim
r→0

χEr,x
= χT+ in L1

loc(G),

where χE denotes the characteristic function of the set E.
Proposition 3.2 was proven in [4] under a more weaker condition. T (x) is regarded as a

“tangent space” in an intrinsic way and is called the tangent group of S at x, see [4] (where
LxT (x) is called the tangent plane through x). Loosely speaking, TH

x S is the projection on
the horizontal bundle of the Lie algebra of the tangent group.

In the following, we always assume that S is a smooth (at least C2) intrinsic regular hyper-
surface and let Ω ⊂ G be a smooth open set such that S ⊂ Ω.
Remark 3.3 It is well known that the horizontal normal vector field nH (x) can be realized
as the projection onto the horizontal bundle of the unit Riemannian normal (also of the unit
Euclidean normal), that is, there exists a nonzero function f(x) on S such that

nH (x) :=
k∑

i=1

〈nE(x), Xi(x)〉EXi(x) = f(x)
k∑

i=1

〈nR(x), Xi(x)〉Xi(x) for x ∈ S, (3.2)

where nR(x) denotes the unit Riemannian normal vector field of S with respect to the inner
product 〈·, ·〉 and nE(x) denotes the unit Euclidean normal vector and 〈·, ·〉E is the standard
Euclidean inner product. Here we identify G with R

n; nE(x) is the usual normal vector if we
regard S ⊂ R

n, and Xi(x) =
∑n

i=1 aj
i (x) ∂

∂xj
is regarded as a vector (a1

i (x), . . . , an
i (x)) ∈ R

n.
The first identity of (3.2) can be regarded as the definition of the horizontal normal vector, see
[15] and [16]; the second identity was cited by many authors, see e.g. [7], but we can not find its
rigorous proof in the literature. For completeness we give the proof in Section 4. It is natural
to ask whether TH

x S is the projection (with respect to 〈·, ·〉 or 〈·, ·〉E) onto the horizontal space
HGx of the tangent space of S at x. The answer is yes. In fact, let TxS be the tangent space
of S at x and let PTxS denote the projection on HGx of TxS, that is, v ∈ HGx belongs to
PTxS if and only if there exists a ṽ ∈ TxS such that v =

∑k
i=1〈ṽ, Xi(x)〉Xi(x). Since TxS does

not contain HGx, the dimension of PTxS is at most k − 1. On the other hand, if v ∈ TH
x S,

then from (3.2) we have
〈v, f(x)−1nR(x)〉 = 〈v, nH (x)〉 + 〈v, f(x)−1nR(x) − nH (x)〉 = 0 + 0 = 0,

and hence TH
x S ⊂ TxS. Thus TH

x S ⊂ PTxS, and hence TH
x S = PTxS. The case with

respect to the Euclidean metric follows from the same argument.
The above discussion in particular implies the following proposition, which will be used in

the proof of the symmetry of the horizontal second fundamental form:
Proposition 3.4 Let X, Y ∈ C2(S, TH S). Then [X, Y ]H ∈ C1(S, TH S).
Proof Recalling the definition of [X, Y ]H , the statement follows from [X, Y ] ∈ C1(S, TS) and
TH S = PTS since X, Y ∈ C2(S, TS) as Remark 3.3 showed.

Let x ∈ S and let V (x) be the unit horizontal normal vector, that is,

V (x) :=
nH (x)
|nH (x)| ,

where |nH (x)| is, of course, computed with respect to 〈·, ·〉c. Since S is an embedded C2

submanifold of G, it is clear that any vector v in TH
p S (p ∈ S) can be extended to a vector field

in TH S by first extending v to a vector field V in TS and then projecting V to TH S, and any
vector field V in TH S can be extended to a horizontal vector field in Δ by first extending V to
a vector field V in TG and then projecting V to Δ. If X, Y are vector fields in TH S, we can
extend them to horizontal vector fields X, Y ∈ C1(Ω, HG) on Ω, apply the ambient derivative
operator D, and then decompose at points of S to get

DXY (x) = (DXY )	(x) + (DXY )⊥(x), x ∈ S, (3.3)
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where (DXY )	(x), (DXY )⊥(x) are the projections of DXY (x) onto TH
x S and the direction of

V (x) respectively, see (3.1).
Definition 3.5 (The horizontal second fundamental form) Let X, Y be vector fields in TH S.
We define II(X, Y ) := (DXY )⊥, where X, Y are the arbitrarily extended horizontal vector fields
of X, Y , respectively, as the horizontal second fundamental form of S.
Theorem 3.6 The horizontal second fundamental form II(X, Y ) is :

1 Independent of the extension of X and Y ;
2 Bilinear over C1(S); and,
3 Symmetric in X and Y .

Proof We first show that the symmetry of II follows from the symmetry of D, (2.4), and
Proposition 3.4. Let X, Y be the arbitrarily extended horizontal vector fields to Ω. Then by
(2.4) we have

II(X, Y ) − II(Y, X) = (DXY − DY X)⊥ = ([X, Y ]H )⊥.

Now by Proposition 3.4, [X, Y ]H |S belongs to TH S. Therefore ([X, Y ]H )⊥|S = 0, so II is
symmetric.

Because DXY (x) depends only on X(x), it is clear that II(X, Y ) is independent of the
extension chosen for X, and that II(X, Y ) is linear over C1(S) in X. By symmetry, the same
is true for Y .

For the tangent term of (DXY )	 in (3.3), we can informally define the tangent horizontal
connection on S, D	 : C1(S, TH S) → C(S, TH S) by D	

XY := (DXY )	. The independence
of the choice of the extensions of X and Y follows from the same argument as in the proof of
Theorem 3.6. Note that we have the symmetry

D	
XY − D	

Y X = [X, Y ]H (3.4)
also by (2.4) and Proposition 3.4. Let X, Y, Z ∈ C1(S, TH S) be arbitrarily extended to Ω.
Using the compatibility of D with respect to 〈·, ·〉c, and evaluating at points of S, we get

X〈Y, Z〉c = 〈DXY, Z〉c + 〈Y, DXZ〉c = 〈(DXY )	, Z〉c + 〈Y, (DXZ)	〉c
= 〈D	

XY, Z〉c + 〈Y, D	
XZ〉c. (3.5)

Therefore we have:
Proposition 3.7 D	 is a restricted nonholonomic connection on TH S endowed with the
restricted metric of 〈·, ·〉c in the sense that, for any C1 sections X, Y, Z of TH S, we have :

1 D	
XY is R-linear in both arguments ;

2 D	
XY is C1(S)-linear in the argument of X;

3 The Leibniz rule holds : D	
X(fY ) = (Xf)Y + fD̃XY for f ∈ C1(S);

4 (3.5) and (3.4) hold.
Proposition 3.8 (The Weingarten type equation) Let X, Y ∈ C1(S, TH S) and N be the hor-
izontal normal vector field. When X, Y, N are arbitrarily extended to Ω, the following equation
holds at points of S: 〈DXN, Y 〉 = −〈N, II(X, Y )〉.
Proof Since 〈N, Y 〉c vanishes identically along S, the following holds along S:

0 = X〈N, Y 〉 = 〈DXN, Y 〉 + 〈N, DXY 〉
= 〈DXN, Y 〉 + 〈N, D	

XY + II(X, Y )〉 = 〈DXN, Y 〉 + 〈N, II(X, Y )〉.
Definition 3.9 The scalar horizontal second fundamental form h is the symmetric bilinear
function on TH S defined by h(X, Y ) = 〈II(X, Y ), V 〉c. That is, II(X, Y ) = h(X, Y )V . Recall
that V is the unit horizontal normal vector field. From the Riesz representation theorem h
uniquely determines an endomorphism of TH S, A, that is, 〈AX, Y 〉c = h(X, Y ), for all X, Y ∈
C1(S, TH S). We call A the horizontal shape operator of S.

From the symmetry of II, A is self-adjoint, that is, 〈AX, Y 〉c = 〈X, AY 〉c for all X, Y ∈
C1(S, TH S). Another way to define A is to let AX = (DXV )	, evaluated at points of S,
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where X(resp. V ) is an extension of X(resp. V ). Since, for any f ∈ C1(Ω), DX(fV ) =
fDXV + X(f)V , we have (DX(fV ))	 = f(DXV )	. The last formula in particular implies
that AX is independent of the choice of the extensions of X and V . This discussion indirectly
proves that II(X, Y ) is independent of the choice of the extensions of X and Y which is given
in Theorem 3.6.

For any x ∈ S, A gives a symmetric linear map Ax : TH
x S → TH

x S. Then by the symmetry
of Ax, Ax has k − 1 real eigenvalues (recalling TH

x S is (k − 1)-dimensional).
Definition 3.10 (Horizontal mean curvature) The k − 1 eigenvalues of Ax, κ1, . . . , κk−1

are called the horizontal principal curvatures at x and the corresponding eigenspaces are called
horizontal principal directions. We define the horizontal mean curvature HX(x) at x as 1

Q−1

times the trace of Ax, that is, HX(x) = 1
Q−1

∑k−1
i=1 κi, and call the product of κ1, . . . , κk−1 the

horizontal Gaussian curvature at x.
Theorem 3.11 The definition of the horizontal mean curvature given in Definition 3.10 co-
incides with that in Definition 1.2, that is,

HX(x) =
1

Q − 1

k∑
i=1

Xi(V i) for any x ∈ S,

where V =
∑k

i=1 V iXi is the unit horizontal normal vector field of S.
Proof There exists an orthonormal basis (with respect to the induced metric of 〈·, ·〉c) of TH S,
{τ1, . . . , τk−1}, such that Aτi = κiτi for i = 1, . . . , k−1 and {τ1, . . . , τk−1, V } is an orthonormal
basis of HG|S . Let τi =

∑k
j=1 tjiXj . Then we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
V jV l +

k−1∑
i=1

tji t
l
i = 0, if j 	= l;

(V j)2 +
k−1∑
i=1

(tji )
2 = 1

for j, l = 1, . . . , k. (3.6)

Extending arbitrarily τi, i = 1, . . . , k − 1, and V to Ω and then evaluating at points of S, we
have

(Q − 1)HX =
k−1∑
i=1

κi =
k−1∑
i=1

〈Aτi, τi〉c =
k−1∑
i=1

〈(Dτi
V )	, τi〉c =

k−1∑
i=1

〈Dτi
V , τi〉c

=
k−1∑
i=1

k∑
j=1

〈τi(V j)Xj , τi〉c =
k−1∑
i=1

k∑
j=1

k∑
l=1

k∑
r=1

tlit
r
i Xl(V j)δr

j

=
k−1∑
i=1

k∑
j=1

k∑
l=1

Xl(V j)tji t
l
i =

k∑
j=1

k∑
j �=l=1

k−1∑
i=1

Xl(V j)tji t
l
i +

k∑
j=1

k−1∑
i=1

Xj(V j)(tji )
2

= −
k∑

j=1

k∑
j �=l=1

Xl(V j)V jV l +
k∑

j=1

k−1∑
i=1

Xj(V j)(tji )
2 (3.7)

=
k∑

l=1

Xl(V l)(V l)2 +
k∑

j=1

k−1∑
i=1

Xj(V j)(tji )
2 (3.8)

=
k∑

j=1

Xj(V j)
(

(V j)2 +
k−1∑
i=1

(tji )
2

)
=

k∑
j=1

Xj(V j), (3.9)

where we have used the first formula of (3.6) to deduce (3.7), used the fact that
∑k

j=1(V
j)2 = 1

to get (3.8) and used the second formula of (3.6) to obtain (3.9).
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4 Final Comments
From the above discussion, we have seen that in the setting of sub-Riemannian geometry, at
least for Carnot groups, the horizontal connection can be used to define the horizontal mean
curvature of intrinsic regular hypersurfaces. It is interesting that such a horizontal connection
can be realized as the projection of the Riemannian connection. We point out that restricted
connections (of the Riemannian connection) on subbundles of the tangent bundle have been
studied by many authors, see [13], [17–19], but have not been used by them to study the
geometry of hypersurfaces.

Note that in Section 3 we have used a few special structures of Carnot groups. In fact, with
more or less modifications, our arguments can also be applied to more general sub-Riemannian
manifolds. More precisely, if we define the horizontal connection on the horizontal bundle as the
projection of the Riemannian connection, then such a horizontal connection is a nonholonomic
connection in the sense of Definition 2.1 and also satisfies the symmetry of (2.4). Of course
the horizontal connection may not have the simple form as in Carnot groups, due to losing
the stratified structure. It should be pointed out that the key to proving the symmetry of the
horizontal second fundamental form is to prove Proposition 3.4 which can be deduced from
(3.2). Fortunately the second identity of (3.2) is valid in the general case.
Lemma 4.1 Let Δ = span{X1, . . . , Xk} be a smooth distribution in Ω ⊂ R

n with Xi =∑n
i=1 cj

i
∂

∂xj
. Assume Δ satisfies the Hörmander condition and denote by E the tangent bundle

generated by Δ. Suppose Δ is endowed with a sub-Riemannian metric 〈·, ·〉c such that 〈·, ·〉c is
the restriction to Δ of a Riemannian metric 〈·, ·〉 on E and {X1, . . . , Xk} is an orthonormal
basis of Δ. Let S be a smooth noncharacteristic hypersurface in Ω and

nH (x) :=
k∑

i=1

n∑
j=1

cj
i (x)nj(x)Xi for x ∈ S

be the horizontal normal vector, where nE(x) =
∑n

i=1 ni ∂
∂xi

is the Euclidean normal vector.
Then there exists a nonzero function f(x) on S such that

nH (x) = f(x)
k∑

i=1

〈nR(x), Xi〉Xi for x ∈ S,

where nR(x) is the Riemannian normal computed with respect to 〈·, ·〉.
Proof We can assume {X1, . . . , Xk, . . . , Xn} is an orthonormal basis of E with respect to 〈·, ·〉.
For i = 1, . . . , n, let Xi =

∑n
j=1 cj

i
∂

∂xj
; then from the assumption the matrix C = (cj

i )n×n

is non-singular at points in Ω. Assume nR(x) =
∑n

i=1 ñi(x)Xi(x) for x ∈ S. Note that the
tangent space TxS is independent of any choice of metrics. Therefore

TxS =
{

v =
n∑

i=1

vi ∂

∂xi
: 〈v, nE(x)〉E = 0

}
=

{
u =

n∑
i=1

uiXi : 〈u, nR(x)〉 = 0
}

, (4.1)

where 〈·, ·〉E denotes the Euclidean metric. Let u =
∑n

i=1 uiXi =
∑n

j=1(
∑n

i=1 cj
iu

i) ∂
∂xj

be any
element in TxS. From (4.1) we have

n∑
i=1

ui

( n∑
j=1

cj
in

j(x)
)

= 0, (4.2)

n∑
i=1

uiñi(x) = 0. (4.3)

Since (4.2) and (4.3) should determine the same solution, we have
n∑

j=1

cj
in

j(x) = f(x)ñi(x) for i = 1, . . . , n,
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for some nonzero function f(x). In particular, we have

nH (x) =
k∑

i=1

ñi(x)Xi = f(x)
k∑

i=1

〈nR(x), Xi〉Xi.

By Lemma 4.1, when we try to extend our arguments to sub-Riemannian manifolds, which
can not be covered by only one chart, it is natural to define the horizontal normal as the
projection of the Riemannian normal onto the horizontal bundle. In this way, the extension
can be smoothly carried out with the same results except Theorem 3.11.
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