• 论文 • 上一篇    下一篇

矩阵非齐次特征值分析

卢旭光   

  1. 清华大学应用数学系
  • 出版日期:1994-03-14 发布日期:1994-03-14

卢旭光. 矩阵非齐次特征值分析[J]. 计算数学, 1994, 16(3): 319-332.

MATRIX INHOMOGENEOUS EIGENVALUE ANALYSIS

  1. Lu Xu-guang(Tsinghua University)
  • Online:1994-03-14 Published:1994-03-14
矩阵非齐次特征值分析卢旭光(清华大学应用数学系)MATRIXINHOMOGENEOUSEIGENVALUEANALYSIS¥LuXu-guang(TsinghuaUniversity)Abstract:Inthispaperwestudythemat...
Abstract In this paper we study the matrix inhomogeneous eigenvalue problem: (A - λI)X = where A If(λ,X) ∈ C × C(n×m) is a solution to the problem, then λ is called an inhomogeneouseigenvalue of A with respect to B. Using topological and analytic methods we obtain (i)geometrical properties of the inhomogeneous eigenvalues, (ii) some sufficient conditionsfor the existence of real solutions of the problem, and (iii) some iterative methods forcomputing all complex solutions of the problem with , where K is asuitable constant, e.g. (A)
()

[1]G.Soderlind;R.M.M.Mattheij,Stabilityandasymptoticestimatesinnonautonomouslineardifferentialsystems,SIAMJ.Math.Anal,16(1985),69-92.
[2]G.E.Forsythe,G.H.Golub,Onthestationaryvaluesofasecond-degreepolynomialontheunitsphere,SIAMJ.Appl.Math,13(1963),1050-1068.
[3]W.Gander;G.H.Golub;UrsvonMatt;Aconstrainedeigenvalueproblem,LinearAlgebraAppl,114/115(1989),815-839.
[4]R.M.M.Mattheij,G.Soderlind;Oninhomogeneouseigenvalueproblems(I),LinearAlgebraAppl,88/89(1987),507-531.
[5]任力伟,非齐次特征值问题解的存在性研究,科学通报,36:6(1991),403-405.
[6]W.Rudin,RealandComplexAnalysis.(有中译本)
[7]R.J.Walker,AlgebraicCurves,Princeton;NewJersey;1950.(有中译本)
[8]王仁宏,梁学章,多元函数逼近,科学出版社,1988.
[9]J.W.Milnor,Topology,FromtheDifferentiableViewpoint,TheUniversityPressofVirginiaCharlottesville;U.S.A.;1965.(有中译本)
[10]J.Doeudonne.Elementsd'analyse(1),Gauthier-Villars,1969.(有中译本)
[11]夏道行等,泛函分析第二教程,高等教育出版社,1987.
No related articles found!
阅读次数
全文


摘要