• 论文 • 上一篇    下一篇

各向异性网格下抛物方程一个新的非协调混合元收敛性分析

张亚东1, 石东洋2   

  1. 1. 许昌学院 数学与统计学院, 河南许昌 461000;
    2. 郑州大学数学系, 郑州 450052
  • 收稿日期:2012-09-04 出版日期:2013-05-15 发布日期:2013-05-13
  • 通讯作者: 石东洋
  • 基金资助:

    国家自然科学基金(10971203; 11271340)和高等学校博士学科点专项 基金(2009410111006)资助项目.

张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180.

Zhang Yadong, Shi Dongyang. CONVERGENCE ANALYSIS OF A NEW NONCONFORMING MIXED FINITE ELEMENT FOR PARABOLIC EQUATION ON ANISOTROPIC MESH[J]. Mathematica Numerica Sinica, 2013, 35(2): 171-180.

CONVERGENCE ANALYSIS OF A NEW NONCONFORMING MIXED FINITE ELEMENT FOR PARABOLIC EQUATION ON ANISOTROPIC MESH

Zhang Yadong1, Shi Dongyang2   

  1. 1. School of Mathematics and Statistics, Xuchang University, Xuchang 461000, Henan, China;
    2. Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China
  • Received:2012-09-04 Online:2013-05-15 Published:2013-05-13
本文将 Crouzeix-Raviart 型非协调线性三角形元应用到抛物方程,建立了一个新的混合元格式.在抛弃传统有限元分析的必要工具 Ritz 投影算子的前提下,直接利用单元的插值性质和导数转移技巧, 分别得到了各向异性剖分下关于原始变量uH-1-模和积分意义下L2-模以及通量p=-▽uL2-模下的最优阶误差估计.数值结果与我们的理论分析是相吻合的.
In this paper, a Crouzeix-Raviart type nonconforming linear triangular finite element is applied to the parabolic equation and a new mixed element formulation is established. By utilizing the properties of the interpolation on the element and derivative delivery techniques instead of the Ritz projection operator, which is an indispensable tool in the traditional finite element analysis, the optimal order error estimates for the primitive solution u in broken H1−norm and L2-norm with integral and the flux p=-▽u in L2-norm are obtained on anisotropic meshes, respectively. The numerical results show the validity of the theoretical analysis.

MR(2010)主题分类: 

()
[1] Clarle P G. The Finite Element Method for Elliptic Problem[M]. North-Holland: Amsterdam,1978.

[2] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996.

[3] Thomée V. Galerkin Finite Element Methods for Parabolic Problems[M]. Springer-Verlay: BerlinHeidelberg, 1997.

[4] Thomée V, Xu J C, Zhang N Y. Superconvergence of the gradient in piecewise linear finite elementapproximation to a parabolic problem[J]. SIAM J. Numer. Anal., 1989, 26(3): 553-573.

[5] Thomée V, Zhang N Y. Error estimates for semidiscrete finite element methods for parabolicinterod- ifferential equations[J]. Math. Comp., 1989, 53(187): 121-139.

[6] Lin Y P, Thomée V, Wahlbin L B. Ritz-Volterra projections to finite element spaces and applicationsto intergrodifferential and related equations[J]. SIAM J. Numer. Anal., 1991, 28(4):1047-1070.

[7] Chrysafinos K, Hou L S. Error estimates for semidiscrete finite element approximations of linearand semilinear paraboic equations uner minimal regularity assumptions[J]. SIAM J. Numer. Anal.,2002, 40(1): 282-306.

[8] Apel Th. Anisotropic Finite Elements: Local Estimates and Applications[M]. B.G. Teubner Stuttgart:Leipzig, 1999.

[9] Apel T, Dobrowolski M. Anisotropic interpolation with application to the finite elment method[J].Computing, 1992, 47(3-4): 277-293.

[10] Chen S C, Shi D Y, Zhao Y C. Anisotropic interpolation and quasi-Wilson element for narrowquadrilateral meshes[J]. IMA J. Numer. Anal., 2004, 24(1): 77-95.

[11] Shi D Y, Mao S P, Chen S C. On the anisotropic accuracy analysis of ACM’s nonconforming finiteelement[J]. J. Comput. Math., 2005, 23(6): 635-646.

[12] Shi D Y, Mao S P, Chen S C. Anisotropic nonconforming finite element with some superconvergenceresults[J]. J. Comput. Math., 2005, 23(3): 261-274.

[13] Lin Q, Lutz Tobiska, Zhou A H. Superconvergence and extrapolation of nonconforming low orderfinite elements applied to the possion equation[J]. IMA J. Numer. Anal., 2005, 25(1): 160-181.

[14] Shi D Y, Zhang Y R. A nonconforming anisotropic finite element approximation with movinggrides for Stokes problem[J]. J. Comput. Math., 2006, 24(5): 561-578.

[15] Shi D Y, Mao S P, Chen S C. A locking-free anisotropic nonconforming finite element for planarlinear elasticity problem[J]. Acta Math. Sci. Ser. B Engl. Ed., 2007, 27B(1): 193-202.

[16] Shi D Y, Guan H B. A class of Crouzeix-Raviart type nonconforming finite element methodsfor parabolic variational inequality problem with moving grid on anistropic meshes[J]. Hokkaido.Math. J., 2007, 36(4): 687-709.

[17] Shi D Y, Pei L F. Low order Crouzeix-Raviart type nonconforming finite element methods forapproximationg Maxwell’s equations[J]. Int. J. Numer. Anal. Model, 2008, 5(3): 373-385.

[18] Shi D Y, GongW. A low order nonconforming anisotropic finite element approximation to parabolicproblem[J]. J. Syst. Sci. & Complexity, 2009, 22: 518-532.

[19] Shi D Y, Ren J C. Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes[J]. Nonlinear Anal. TMA., 2009, 71(9): 3842-3852.

[20] Shi D Y, Wang C X. A new low-order non-conforming mixed finite-element scheme for secondorderelliptic problems[J]. Int. J. Comput. Math., 2011, 88(10): 2167-2177.

[21] Shi D Y, Zhang Y D. High accuracy analysis of a new nonconforming mixed finite element schemefor Sobolev equations[J]. Appl. Math. Comput., 2011, 218(7): 3176-3186.

[22] Shi D Y, Xu C. Anisotropic nonconforming Crouzeix-Raviart type FEM for second-order ellipticproblems[J]. Appl. Math. Mech., 2012, 33(2): 243-252.

[23] Shi D Y, Xu C. An anisotropic locking-free nonconforming triangular finite element method forplanar linear elasticity problem[J]. J. Comput. Math., 2012, 30(2): 124-138.

[24] Shi D Y, Wang X L. A low order anisotropic nonconforming characteristic finite element methodfor a convection-dominated transport problem[J]. Appl. Math. Comput., 2009, 213(2): 411-418.

[25] Shi D Y, Wang X L. Two low order characteristic finite element methods for a convectiondominatedtransport problem[J]. Comput. Math. Appl., 2010, 59(2): 3630-3639.

[26] Shi D Y, Yu Z Y. Low-order nonconforming mixed finite element methods for stationary incompressiblemagnetohydrodynamics equations[J]. J. Appl. Math., vol. 2012, Article ID 825609, 21pages, 2012. doi:10.1155/2012/825609

[27] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学,2010, 32(2): 213-218.

[28] 史峰, 于佳平, 李开泰. 椭圆型方程的一种新型混合有限元格式[J]. 工程数学学报, 2011, 28(2): 231-237.

[29] 刘洋, 李宏, 何斯日古楞. 伪双曲型积分-微分方程的H1-Galerkin混合元法误差估计[J]. 高等学校计算数学学报, 2010, 32(1):1-20.
[1] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[2] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[3] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[4] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353.
[5] 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362.
[6] 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95.
[7] 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.
[8] 石东洋, 张亚东. 抛物型方程一个新的非协调混合元超收敛性分析及外推[J]. 计算数学, 2013, 35(4): 337-352.
[9] 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418.
[10] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
[11] 陈绍春, 梁冠男, 陈红如. Zienkiewicz元插值的非各向异性估计[J]. 计算数学, 2013, 35(3): 271-274.
[12] 石东洋, 王芬玲, 史艳华. 各向异性EQ1rot非协调元高精度分析的一般格式[J]. 计算数学, 2013, 35(3): 239-252.
[13] 黄佩奇, 陈金如. 非匹配网格上Stokes-Darcy模型的非协调元方法及其预条件技术[J]. 计算数学, 2011, 33(4): 397-408.
[14] 石东洋, 张斐然. Sine-Gordon方程的一类低阶非协调有限元分析[J]. 计算数学, 2011, 33(3): 289-297.
[15] 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372.
阅读次数
全文


摘要