• 论文 • 上一篇    下一篇

一类满足FSAL技术的RKNd方法

翟文娟, 陈丙振   

  1. 北京交通大学海滨学院, 河北黄骅 061100
  • 收稿日期:2012-06-28 出版日期:2013-05-15 发布日期:2013-05-13
  • 通讯作者: 翟文娟

翟文娟, 陈丙振. 一类满足FSAL技术的RKNd方法[J]. 计算数学, 2013, 35(2): 151-158.

Zhai Wenjuan, Chen Bingzhen. A CLASS OF RKNd METHOD SATISFIED FSAL TECHNIQUE[J]. Mathematica Numerica Sinica, 2013, 35(2): 151-158.

A CLASS OF RKNd METHOD SATISFIED FSAL TECHNIQUE

Zhai Wenjuan, Chen Bingzhen   

  1. Beijing Jiaotong University Haibin College, Huanghua 061100, Hebei, China
  • Received:2012-06-28 Online:2013-05-15 Published:2013-05-13
陈丙振和游雄给出了内级阶比传统 RK 方法高一阶的 RKNd 方法.FSAL技术是一种常用的节省函数计算量的手段. 其主要思想是,方法的更新与内级的最后一步相同. 本文正是给出满足FSAL技术的RKNd 方法. 数值试验表明, 本文的 RKNdF 方法比RKNd 方法在计算效率上具有一定的优越性.
Chen Bingzhen and You Xiong obtained RKNd methods whose internal stages one order higher than the traditional Runge-Kutta (RK) methods. FSAL technique is a commonly used method of saving function calculations. The main idea is its update is same as the last internal stage. This paper is mainly considered the RKNd methods satisfied FSAL technique. Numerical experiments accompanied show the superiority of RKNdF methods satisfied FSAL technique in efficiency to RKNd methods.

MR(2010)主题分类: 

()
[1] 陈丙振, 游雄. 求解初值问题的RKNd方法[J]. 计算数学, 2010, 32(4): 399-412.

[2] Dooren R V. Stabilization of Cowell's classical finite difference method for numerical integration[J]. Comput. Phys., 1974, 16: 186-192.

[3] Goeken D, Johnson O. Runge-Kutta with higher order derivative approximations[J]. Appl. Numer. Math., 2000, 34: 207-218.

[4] Vyver H V. A Runge-Kutta-Nyström pair for the numerical integration of perturbed oscillators[J]. Comput. Phys. Commun., 2005, 167: 129-142.
[1] 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166.
[2] 张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22.
[3] 陈丙振, 游雄. 求解初值问题的 RKNd 方法[J]. 计算数学, 2010, 32(4): 399-412.
[4] 陈丽容,刘德贵. 组合RK-Rosenbrock方法及其稳定性分析[J]. 计算数学, 2000, 22(3): 319-332.
阅读次数
全文


摘要