• 论文 • 上一篇    

非光滑函数的分数阶插值公式

樊梦, 王同科, 常慧宾   

  1. 天津师范大学数学科学学院, 天津 300387
  • 收稿日期:2015-12-07 出版日期:2016-04-15 发布日期:2016-05-13
  • 基金资助:

    国家自然科学基金(11471166)资助项目.

樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224.

Fan Meng, Wang Tongke, Chang Huibin. A FRACTIONAL INTERPOLATION FORMULA FOR NON-SMOOTH FUNCTIONS[J]. Mathematica Numerica Sinica, 2016, 38(2): 212-224.

A FRACTIONAL INTERPOLATION FORMULA FOR NON-SMOOTH FUNCTIONS

Fan Meng, Wang Tongke, Chang Huibin   

  1. School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China
  • Received:2015-12-07 Online:2016-04-15 Published:2016-05-13
本文基于局部分数阶Taylor展开式构造非光滑函数的分数阶插值公式,证明了插值公式的存在和唯一性,给出了分数阶插值的Lagrange表示形式及其误差余项,讨论了一种混合型的分段分数阶插值和整数阶插值的收敛阶.数值算例验证了对于非光滑函数分数阶插值明显优于通常的多项式插值,并说明在实际计算中采用分段混合分数阶和整数阶插值可以使得插值误差在区间上分布均匀,能够极大地提高插值精度.
This paper constructs a fractional interpolation formula for non-smooth functions based on the local fractional Taylor's expansion. The existence and uniqueness of the fractional interpolation formula are proved. The formula with Lagrange basis and its error remainder are provided. The convergence order of a hybrid pattern for piecewise fractional order interpolation and integer-order interpolation is also discussed. Numerical examples demonstrate that the fractional interpolation is obviously superior to the traditional polynomial interpolation for non-smooth functions. They also show that the interpolating error can be uniformly distributed on the interval by using the piecewise hybrid interpolation, which can exceedingly improve the interpolation accuracy.

MR(2010)主题分类: 

()
[1] 王兴华, 杨义群. 关于低度光滑函数的插值余项[J]. 高等学校计算数学学报, 1983, 5(3):193-203.

[2] Revers M. The divergence of Lagrange interpolation for |x|α at equidistant nodes[J]. Journal of Approximation Theory, 2000, 103(2):269-280.

[3] Lu Zhikang, Ge Xifang. The divergence of Lagrange interpolation for |x|α[J]. Analysis in Theory and Application, 2005, 21(4):385-394.

[4] Tachev G T. Piecewise linear interpolation with nonequidistant nodes[J]. Numerical Functional Analysis and Optimization, 2000, 21(7-8):945-953.

[5] Arandiga F. Interpolation and approximation of piecewise smooth functions[J]. SIAM Journal on Numerical Analysis, 2006, 43(1):41-57.

[6] 王同科, 佘海艳, 刘志方. 分数阶光滑函数线性和二次插值公式余项估计[J]. 计算数学, 2014, 36(4):393-406.

[7] Kolwankar K M. Recursive local fractional derivative[J]. arXiv preprint arXiv:1312.7675(2013).

[8] Liu Zhifang, Wang Tongke and Gao Guanghua. A local fractional Taylor expansion and its computation for insufficiently smooth functions[J]. East Asian Journal on Applied Mathematics, 2015, 5(2):176-191.

[9] Rapai? M R, Šekara T B, Govedarica V. A novel class of fractionally orthogonal quasi-polynomials and new fractional quadrature formulas[J]. Applied Mathematics and Computation, 2014, 245(15):206-219.

[10] Rebelo M, Diogo T. A hybrid collocation method for a nonlinear Volterra integral equation with weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2010, 234(9), 2859-2869.

[11] 李庆扬, 王能超, 易大义. 数值分析(第五版)[M]. 北京:清华大学出版社, 2008.

[12] 王同科, 张东丽, 王彩华.Mathematica与数值分析实验[M].北京:清华大学出版社, 2011.
[1] 王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81.
[2] 张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22.
[3] 许秀秀, 黄秋梅. 拟等级网格下非线性延迟微分方程间断有限元法[J]. 计算数学, 2016, 38(3): 281-288.
[4] 张英晗, 杨小远. 一类带有空间时间白噪音随机弹性方程的全离散差分格式[J]. 计算数学, 2016, 38(1): 25-46.
[5] 孟文辉, 王连堂. Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析[J]. 计算数学, 2015, 37(2): 123-136.
[6] 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20.
[7] 王同科, 佘海艳, 刘志方 . 分数阶光滑函数线性和二次插值公式余项估计[J]. 计算数学, 2014, 36(4): 393-406.
[8] 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304.
[9] 李永海. 抛物方程的一种广义差分法(有限体积法)[J]. 计算数学, 2002, 24(4): 487-500.
阅读次数
全文


摘要