• 论文 • 上一篇    下一篇

非线性随机延迟微分方程Heun方法的数值稳定性

王文强1,2, 陈艳萍3   

  1. 1. 湘潭大学数学与计算科学学院, 湖南湘潭 411105;
    2. 湘潭大学土木工程与力学学院, 湖南湘潭 411105;
    3. 华南师范大学数学科学学院, 广州 510631
  • 收稿日期:2009-11-03 出版日期:2011-02-15 发布日期:2011-03-08
  • 基金资助:

    广东省高等学校珠江学者计划、国家自然科学基金(10871207)、973项目(2005CB321703)、教育部高校博士点基金(20094301110001)、湖南省自科基金(09JJ3002)和湘潭大学博士后科学基金资助项目.

王文强, 陈艳萍. 非线性随机延迟微分方程Heun方法的数值稳定性[J]. 计算数学, 2011, 33(1): 69-76.

Wang Wenqiang, Chen Yanping. NUMERICAL STABILITY OF HEUN METHODS FOR NONLINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2011, 33(1): 69-76.

NUMERICAL STABILITY OF HEUN METHODS FOR NONLINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

Wang Wenqiang1,2, Chen Yanping3   

  1. 1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China;
    2. Civil Engineering & Machanics College, Xiangtan University, Xiangtan 411105, Hunan, China;
    3. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
  • Received:2009-11-03 Online:2011-02-15 Published:2011-03-08

本文讨论一般非线性随机延迟微分方程Heun方法的数值稳定性,证明了如果问题本身满足零解是均方指数稳定和均方渐近稳定的充分条件,则当方程的漂移项进一步满足一定的条件时,Heun方法是MS-稳定的, 带线性插值的Heun方法是均方指数稳定的和GMS-稳定的理论结果. 文末的数值试验进一步验证了所得的相关结论.

In this paper, the authors investigated the numerical stability of Heun methods for nonlinear stochastic delay differential equations. When the analytical solution satisfies the conditions of mean-square stability, and if the drift term satisfy some restrictions, then the Heun methods with linear interpolation procedure is exponential mean-square stable and GMS-stable, the Heun methods is mean-square stable(MS-stable). Moreover, these results are also verified by some numerical examples.

MR(2010)主题分类: 

()

[1] Christopher T H Baker. Evelyn Buckwar, Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations[J]. J. Comput. Appl. Math., 2005, 184: 404-427.
[2] Xuerong Mao. Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations[J]. J. Comput. Appl. Math., 2007, 200: 297-316.
[3] Yaozhong Hu, Salah-Eldin A. Mohammed, Feng Yan. Discrete-time approximations of stochastic differential systems with memory. Dept. Mathematics[OL]. Southern Illinois Univ., Carbondale. Available at http://sfde.math.siu.edu/recentpub.html.2001.
[4] Yaozhong Hu, Salah-Eldin A. Mohammed, Feng Yan. Discrete-time approximations of stochastic delay equations: the Milstein scheme[J]. The Annals of Probability, 2004, 32(1A): 265-314.
[5] Wanrong Cao, Mingzhu Liu, Zhencheng Fan. MS-stability of the Euler-Maruyama method for stochastic differential delay equations[J]. Applied Mathematics and Computation, 2004, 159: 127-135.
[6] Zhiyong Wang, Chengjian Zhang. An analysis of stability of Milstein method for stochastic differential equations with delay[J]. Computers and Mathematics with Applications, 2006, 51: 1445-1452.
[7] Norbert Hofmann, Thomas Müller-Gronbach, A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag[J]. Journal of Computational and Applied Mathematics, 2006, 197: 89-121.
[8] 王文强, 黄山, 李寿佛. 非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J]. 计算数学, 2007, 29(2): 217-224.
[9] 王文强, 李寿佛, 黄山. 非线性随机延迟微分方程Euler-Maruyama方法的收敛性[J]. 系统仿真学报, 2007, 19(17): 3910-3913.
[10] 王文强, 李寿佛, 黄山. 非线性随机延迟微分方程半隐式Euler方法的收敛性[J]. 云南大学学报(自然科学版), 2008, 30(1): 11-15.
[11] 王文强. 几类非线性随机延迟微分方程数值方法的收敛性与稳定性[D]. 博士论文, 湘潭大学, 2007.
[12] Grüne L, Kloeden P. E. Pathwise approximation of random ordinary differential equations[J]. BIT, 2001, 41(4): 711-721.

[1] 彭捷, 代新杰, 肖爱国, 卜玮平. 中立型随机延迟微分方程分裂步θ方法的强收敛性[J]. 计算数学, 2020, 42(1): 18-38.
[2] 王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81.
[3] 张迪, 刘华勇, 李璐, 张大明, 王焕宝. 基于几何连续的AT-β-Spline曲线曲面的构造[J]. 计算数学, 2018, 40(3): 227-240.
[4] 李军成, 刘成志. 带参数的C3连续拟Catmull-Rom样条函数[J]. 计算数学, 2018, 40(1): 96-106.
[5] 李军成, 刘成志. 形状可调的C2连续三次三角Hermite插值样条[J]. 计算数学, 2016, 38(2): 187-199.
[6] 樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224.
[7] 刘植, 肖凯, 江平, 谢进. 一类四次有理插值样条的点控制[J]. 计算数学, 2016, 38(1): 56-64.
[8] 宋爱平, 陶建明, 易旦萍, 张益汉. 可调形三次三角Cardinal插值样条曲线[J]. 计算数学, 2015, 37(1): 34-41.
[9] 徐应祥. n维散乱数据带自然边界条件多元多项式样条插值[J]. 计算数学, 2014, 36(4): 407-426.
[10] 王同科, 佘海艳, 刘志方 . 分数阶光滑函数线性和二次插值公式余项估计[J]. 计算数学, 2014, 36(4): 393-406.
[11] 司红颖, 陈绍春. 半线性椭圆问题Petrov-Galerkin逼近及亏量迭代[J]. 计算数学, 2014, 36(3): 316-324.
[12] 赵桂华, 李春香, 孙波. 带跳随机微分方程的Euler-Maruyama方法的几乎处处指数稳定性和矩稳定性[J]. 计算数学, 2014, 36(1): 65-74.
[13] 王刚, 周小辉, 王宝勤. n维特殊伸缩矩阵的构造与n维广义插值细分函数向量[J]. 计算数学, 2013, 35(4): 377-384.
[14] 刘植, 陈晓彦, 江平, 张莉. 基于函数值的线性有理插值样条的区域控制[J]. 计算数学, 2011, 33(4): 367-372.
[15] 范振成, 宋明辉. 非全局Lipschitz条件下随机延迟微分方程Euler方法的收敛性[J]. 计算数学, 2011, 33(4): 337-344.
阅读次数
全文


摘要