• 论文 •

Powell-Sabin(Ⅱ)型加密三角剖分下的二元三次一阶光滑样条函数空间

1. 广西民族大学数学与计算机科学学院,广西民族大学数学与计算机科学学院 南宁 530006 云南省蒙自县红河学院数学系661100,南宁 530006
• 出版日期:2008-01-14 发布日期:2008-01-14

BIVARIATE C~1 CUBIC SPLINE SPACE OVER POWELL-SABIN'S TYPE (Ⅱ) REFINEMENT

1. Chen Sunkang Liu Huanwen (Department of Mathematics and Computer Science,Guangxi University for Nationalities,Nanning 530006,China)
• Online:2008-01-14 Published:2008-01-14

In this paper,by using the B-net method and the technique of minimal determining set, the dimension of bivariate C~1 cubic spline space S_3~1(Δ_(PS2)) over the Powell-Sabin's type (Ⅱ) refinement is determined and a locally supported dual basis is constructed.
()
 [1]Strang G.Piecewise polynomials and the finite elements Method[J].Bull.Amer.Math.Soc.,1973, 79:736-740. [2]Morgan J,Scott R.A nodal basis for C piecewise polynomials of degree n(?)5[J].Math.Comp., 1975,29:736-740. [3]王仁宏．多元齿的结构与插值[J]．数学学报，1975，18：91-106． [4]Chui C K,Wang R H.Multivariate spline spaces[J].J.Math.Anal.Appl.,1983,47:131-142. [5]Schumaker L L.On the dimension of spaces of piecewise polynomials in two variables,in:Multi- variable Approx.Theory (eds.Schempp,Zeller),Birkhauser,Basel,1979,396-412. [6]Alfeld P,Schumaker L L.The dimension of spline spaces of smoothness r for d(?)4r+1[J]. Construct.Approx.,1987,3:189-197. [7]王仁宏和卢旭光．二元样条空间的维数[J]．中国科学，1988，A6：585-594． [8]Hong D.Spaces of bivariate spline functions over triangulations[J].Approx.Theory and Appl., 1991,7:56-75. [9]Alfeld P,Piper B,Schumaker L L.An explicit basis for C~1 quartic bivariate spline[J].Siam J. Numer.Anal.,1987,24:891-911. [10]Morgan J,Scott R.The dimension of piecewise polynomial[M].Manuscript,1975. [11]王仁宏，许志强．分片代数曲线Bezout数的估计．中国科学[J]．2003，33：185-192． [12]Ye M D.Some problems for the bivariate C~1-cubic splines[J].J.Approx.Theory Appl.,1988,4: 1-11. [13]Liu H W.The dimension of cubic spline space over stratified triangulation[J].J.Math.Res.& Exp.,1996,16:199-208. [14]刘焕文．二元样条的积分表示及分层三角剖分下二次样条空间的维数[J]．数学学报，1994，37：534-543． [15]Liu H W,Hong D.The bivariate C~1 cubic spline space over even stratified triangulations[J].J. Comput.Anal.Appl.,2002,4:19-35. [16]Lai M J.Scattered data interpolation and approximation by using bivariate C~1 piecewise cubic polynomials[J].Comp.Aided Geom.Design,1996,13:81-88. [17]Liu H W,Hong D.An explicit local basis for C~1 cubic spline spaces over a triangulated quadran- gulation[J].J.Comput.Appl.Math.,2003,155:187-200. [18]Ciarlet P G.Sur Lélement de Clough et Tocher[J].Rev.Francaise Auto.Int.Rech.Oper.,1974, 8:19-27. [19]Percell P.On cubic and quartic Clough-Tocher finite elements[J].SIAM J.Numer.Anal.,1976, 13:100-103. [20]Powell M J D,Sabin M A.Piecewise quadratic approximation on triangles[J].ACM Trans.Math. Software,1977,3:316-325. [21]Sablonniere P.Composite finite elements of class C~2,in:Topics in Multivariate Approximation[M], C.K.Chui,L.L.Schumaker and F.I.Utreras (ed.),Academic Press,New York,1987,207-217. [22]Lai M J.On C~2 quintic spline functions over triangulation of Powell-Sabin's type[J].J.Comput. Appl.Math.,1996,73:135-155. [23]Liu H W,Chen S K,Chen Y P.Bivariate C~1 cubic spline space over Powell-Sabin's type-1 refinement[J].Journal of Information and Computational Science,2007,4:151-160. [24]王仁宏等．多元样条及其应用[M]．北京：科学出版社，1994．
 No related articles found!