• 青年述评 •    下一篇

计算神经科学

周栋焯   

  1. 上海交通大学数学科学学院、自然科学研究院、科学与工程计算教育部重点实验室, 上海 200240
  • 收稿日期:2021-01-11 出版日期:2021-04-15 发布日期:2021-05-13
  • 作者简介:周栋焯,上海交通大学数学科学学院、自然科学研究院教授.2002年和2007年在北京大学数学科学学院计算数学专业分别获得学士和博士学位,2007-2009年在美国纽约大学库朗研究所作博士后.2010年进入上海交通大学数学科学学院、自然科学研究院工作.研究领域为计算与应用数学,具体研究方向是计算神经科学,曾获上海市科委浦江人才、青年科技启明星,以及国家基金委的优秀青年基金项目等.
  • 基金资助:
    中国国家重点研发计划(2019YFA0709503)和国家自然科学基金(12071287)资助

周栋焯. 计算神经科学[J]. 计算数学, 2021, 43(2): 133-161.

Zhou Douglas. COMPUTATIONAL NEUROSCIENCE[J]. Mathematica Numerica Sinica, 2021, 43(2): 133-161.

COMPUTATIONAL NEUROSCIENCE

Zhou Douglas   

  1. School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-01-11 Online:2021-04-15 Published:2021-05-13
计算神经科学是近三十年来出现的一个新兴交叉学科,它强调采用数学定量的方法,如数学建模、理论分析和数值模拟等来研究和解决神经科学中的重要科学问题,一方面神经科学实验现象为发展新的数学模型、理论和算法提供了基础,另一方面通过数学定量,能反过来揭示神经科学实验现象背后的数理机制,发现新的科学规律.随着欧盟、美国、日本和我国脑计划的陆续推出,对大脑的探索已成为重要的前沿科学领域,同时随着数据科学、机器学习等领域的兴起,研究如何借鉴大脑的工作原理来实现类脑计算以及人工智能也成为了世界大国科技竞争的战略制高点.鉴于此,计算神经科学作为连接大脑神经科学与类脑人工智能两大研究领域的桥梁,在前沿科学领域和国家战略需求中的地位变得越来越重要.计算神经科学研究领域的发展,对于推动神经科学与数学、物理、统计、计算机、人工智能等其他自然科学学科及工程应用学科之间的共进发展,以及综合利用不同学科的优势互补来取得从零到一的重要科学突破有着重大意义.
Computational neuroscience is an emerging interdiscipline and first appeared as a specific research field in the late 1980s. It is aimed to solve important scientific issues in neuroscience through mathematical modeling, theoretical analysis, and numerical simulation. On the one hand, neuroscience experiments provide the basis for the development of new mathematical models, theories, and algorithms. On the other hand, it is helpful to reveal mechanisms underlying experimental phenomena and discover new scientific laws through mathematical and quantitative analysis. The US Brain Initiative and the European Human Brain Project were both launched in 2013, while the Japan brain/minds project was launched in 2014. Recently, the China Brain Project ("One body, two wings") has also been approved by the State Council as one of the Innovation 2030 Major Science and Technology Projects. The investigations of brain and its related brain-inspired artificial intelligence are significant frontier sciences and have the leading strategic position of national competition in research and development. Because of this, computational neuroscience is regarded as a bridge between brain science and artificial intelligence and plays more and more important roles in frontier sciences and national strategic needs. The development of computational neuroscience may advance neuroscience, mathematics, physics, statistics, computer science, artificial intelligence, and other natural sciences and engineering disciplines. In addition, it can integrate the advantages of different disciplines to complement each other, and achieve important scientific breakthroughs.

MR(2010)主题分类: 

()
[1] 黄秉宪. 脑的高级功能和神经网络[M]. 科学出版社, 2000.
[2] 郭爱克. 计算神经科学[M]. 上海科技教育出版社, 2000.
[3] 李继硕. 神经科学基础[M]. 高等教育出版社, 2002.
[4] 杨建刚. 人工神经元网络实用教程[M]. 浙江大学出版社, 2001.
[5] 周志华,曹存根. 神经网络及其应用[M]. 清华大学出版社, 2004.
[6] 阮晓钢. 神经计算科学——在细胞的水平上模拟脑功能[M]. 国防工业出版社, 2006.
[7] 叶世伟,史忠植译. Neural Networks[M]. 机械工业出版社, 2004.
[8] 赵志奇,陈军主译. Modern Techniques in Neuroscience Research[M]. 科学出版社, 2006.
[9] 吴俊芳,刘忞主编. 现代神经科学研究方法[M]. 中国协和医科大学出版社, 2006.
[10] Hubel D H. Tungsten microelectrode for recording from single units[J]. Science, 1957, 125:549-550.
[11] Cole K S, Moore J W. Ionic current measurements in the squid giant axon membrane[J]. The Journal of general physiology, 1960, 44:123-169.
[12] Crick F. The impact of molecular biology on neuroscience[J]. Philosophical Transactions of the Royal Society, 1999, 354:2021-2025.
[13] Lauterbur P C. Image formation by induced local interactions:examples employing nuclear magnetic resonance[J]. Nature, 1973, 242:190-191.
[14] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. Journal of Physiology, 1952, 117:500-544.
[15] Rall W. Theory of physiological properties of dendrites[J]. Annals of the New York Academy of Sciences, 1962, 96(4):1071-1092.
[16] Schwartz E L. Computational Neuroscience[M]. Cambridge:MIT Press, 1990.
[17] Dayan P, Abbott L. Theoretical neuroscience[M]. Cambridge:MIT Press, 2001.
[18] Sejnowski T J, Koch C, Churchland P S. Computational neuroscience[J]. Science, 1988, 241:1299-1306.
[19] Abbott L. Theoretical neuroscience rising[J]. Neuron, 2008, 60:489-495.
[20] 汪小京. 21世纪的中国计算神经科学展望[M]. 科学时报, 2010.
[21] Wang X J, et al. Computational Neuroscience:A Frontier of the 21st Century[J]. National Science Review, 2020, 7:1418-1422.
[22] Zhou D, Xiao Y, Zhang Y, Xu Z, Cai D. Causal and Structural Connectivity of Pulse-Coupled Nonlinear Networks[J]. Physical Review Letters, 2013, 111:054102.
[23] Zhou D, Xiao Y, Zhang Y, Xu Z, Cai D. Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems[J]. PLOS ONE, 2014, 9:e87636.
[24] Zhou D, Rangan A V, McLaughlin D W, Cai D. Spatiotemporal dynamics of neuronal population response in the primary visual cortex[J]. Proceedings of the National Academy of Sciences, USA, 2013, 110:9517-9522.
[25] Rosenblatt F. Principles of Neurodynamics[M]. New York:Spartan, 1962.
[26] Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-Inspired Artificial Intelligence[J]. Neuron, 2017, 95:245-258.
[27] Richards B A, Lillicrap T P, Kording K P. A deep learning framework for neuroscience[J]. Nature Neuroscience, 2019, 22:1761-1770.
[28] Poo M M, Du J, Ip N Y, Xiong Z, Xu B, Tan T. China Brain Project:Basic neuroscience, brain diseases, and brain-inspired computing[J]. Neuron, 2016, 92:591-596.
[29] Lillicrap T P, Santoro A, Marris L, Akerman C J, Hinton G. Backpropagation and the brain[J]. Nature Reviews Neuroscience, 2020, 21:335-346.
[30] Zhou D, Rangan A V, Sun Y, Cai D. Network-induced chaos in integrate-and-fire neuronal ensembles[J]. Physical Review E, 2009, 80:031918.
[31] Zhou D, Sun Y, Rangan A V, Cai D. Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type[J]. Journal of Computational Neuroscience, 2010, 28:229-245.
[32] Sompolinsky H, Crisanti A, Sommers H J. Chaos in random neural networks[J]. Physical Review Letters, 1988, 61:259-262.
[33] Newhall K, Kovacic G, Kramer P, Zhou D, Rangan A V, Cai D. Dynamics of current-based, Poisson driven, integrate-and-fire neuronal networks[J]. Communications in Mathematical Sciences, 2010, 8:541-600.
[34] Gu Q L, Tian Z K, Kovacic G, Zhou D, Cai D. The dynamics of balanced spiking neuronal networks under Poisson drive is not chaotic[J]. Frontiers in Computational Neuroscience, 2018, 12:47.
[35] van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity[J]. Science, 1996, 274:1724-1726.
[36] van Vreeswijk C, Sompolinsky H. Chaotic balanced state in a model of cortical circuits[J]. Neural Computation, 1998, 10:1321-1371.
[37] Wang X J. Neurophysiological and computational principles of cortical rhythms in cognition[J]. Physiological Review, 2010, 90:1195-1268.
[38] Xu Z J, Bi G, Zhou D, Cai D. A dynamical state underlying the second order maximum entropy principle in neuronal networks[J]. Communications in Mathematical Sciences, 2017, 15:665-692.
[39] Xu Z J, Crodelle J, Zhou D, Cai D. Maximum entropy principle analysis in network systems with short-time recordings[J]. Physical Review E, 2019, 99:022409.
[40] Xu Z J, Gu X, Li C, Cai D, Zhou D, McLaughlin D W. Neural networks of different species, brain areas and states can be characterized by the probability polling state[J]. European Journal of Neuroscience, 2020, 52:3790-3802.
[41] Li S, McLaughlin D W, Zhou D. Mathematical modeling and analysis of spatial neuron dynamics:dendritic integration and beyond[J]. Communications on Pure and Applied Mathematics, accepted.
[42] Sun Y, Zhou D, Rangan A V, Cai D. Library-based numerical reduction of the Hodgkin-Huxley neuron for network simulation[J]. Journal of Computational Neuroscience, 2009, 27:369-390.
[43] Tian Z K, Crodelle J, Zhou D. A combined offline-online algorithm for Hodgkin-Huxley neural networks[J]. Journal of Scientific Computing, 2020, 84:10.
[44] Tian Z K, Zhou D. Exponential time differencing algorithm for pulse-coupled Hodgkin-Huxley neural networks[J]. Frontiers in Computational Neuroscience, 2020, 14:40.
[45] Zhou D, Zhang Y, Xiao Y, Cai D. Reliability of the Granger causality inference[J]. New Journal of Physics, 2020, 14:40.
[46] Zhou D, Zhang Y, Xiao Y, Cai D. Analysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics[J]. Frontiers in Computational Neuroscience, 2014, 8:75.
[47] Zhang Y, Xiao Y, Zhou D, Cai D. Granger causality analysis with nonuniform sampling and its application to pulse-coupled nonlinear dynamics[J]. Physical Review E, 2016, 93:042217.
[48] Barranca V J, Kovacic G, Zhou D, Cai D. Improved compressive sensing of natural scenes using localized random sampling[J]. Scientific Reports, 2016, 6:31976.
[49] Barranca V J, Zhou D, Cai D. A Novel characterization of amalgamated networks in natural systems[J]. Scientific Reports, 2015, 5:10611.
[50] Barranca V J, Zhou D, Cai D. Low-rank network decomposition reveals structural characteristics of small-world networks[J]. Physical Review E, 2015, 92:062822.
[51] Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks[J]. Neuroimage, 2011, 56:2068-2079.
[52] Li S, Liu N, Zhang X, Zhou D, Cai D. Bilinearity in spatiotemporal dendritic integration of synaptic conductance inputs[J]. PLoS Computational Biology, 2014, 10:e1004014.
[53] Li S, Liu N, Zhang X, Zhou D, Cai D. Determination of effective synaptic conductances using somatic voltage clamp[J]. PLoS Computational Biology, 2019, 15:e1006871.
[54] Barranca V J, Kovacic G, Zhou D, Cai D. Sparsity and compressed coding in sensory systems[J]. PLoS Computational Biology, 2014, 10:e1003793.
[55] Barranca V J, Kovacic G, Zhou D, Cai D. Efficient image processing via compressive sensing of integrate-and-fire neuronal network dynamics[J]. Neurocomputing, 2016, 171:1313-1322.
[56] Ganguli S, Sompolinsky H. Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis[J]. Annual Review of Neuroscience, 2012, 35:485-508.
[57] Zhou D, Li S, Zhang X, Cai D. Phenomenological incorporation of nonlinear dendritic integration using integrate-and-fire neuronal frameworks[J]. PLoS ONE, 2013, 8:e53508.
[58] Li S, Liu N, Zhang X, McLaughlin D W, Zhou D, Cai D. Dendritic computations captured by an effective point neuron model[J]. Proceedings of the National Academy of Sciences, USA, 2019, 116:15244-15252.
[59] Dai W P, Zhou D, McLaughlin D W, Cai D. Mechanisms underlying contrast-dependent orientation selectivity in mouse V1[J]. Proceedings of the National Academy of Sciences, USA, 2018, 115:11619-11624.
[60] Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45:167-256.
[61] Sporns O, Chialvo D R, Kaiser M, Hilgetag C. Organization, development and function of complex brain networks[J]. TRENDS in Cognitive Sciences, 2004, 8:418-425.
[62] Honey C J, Thivierge J, Sporns O. Can structure predict function in the human brain?[J]. NeuroImage, 2010, 52:766-776.
[63] Wiener N. The theory of prediction[J]. In:Beckenbach E, (Ed.) Modern mathematics for engineers. McGraw-Hill, New York, 1956.
[64] Granger C. Investigating causal relations by econometric models and crossspectral methods[J]. Econometrica, 1969, 37:424-438.
[65] Geweke J. Measurement of linear dependence and feedback between multiple time series[J]. Journal of the American Statistical Association, 1982, 77:304-313.
[66] Geweke J. Measures of conditional linear dependence and feedback between time series[J]. Journal of the American Statistical Association, 1984, 79:907-915.
[67] Ding M, Chen Y, Bressler S L. Granger causality:basic theory and application to neuroscience[J]. In Handbook of time series analysis, Schelter S, Winterhalder M, Timmer J (eds). Wiley-VCH:Berlin, 2006, 437-460.
[68] Bressler S L, Seth A K. Wiener-Granger causality:a well established methodology[J]. NeuroImage, 2011, 58:323-329.
[69] Seth A K. A MATLAB toolbox for Granger causal connectivity analysis[J]. Journal of Neuroscience Methods, 2010, 186:262-273.
[70] Sun Y, Zhou D, Rangan A V, Cai D. Pseudo-Lyapunov exponents and predictability of HodgkinHuxley neuronal network dynamics[J]. Journal of Computational Neuroscience, 2010, 28:247-266.
[71] Somers D C, Nelson S B, Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells.[J]. Journal of Neuroscience, 1995, 15:5448-5465.
[72] Troyer T W, Krukowski A E, Priebe N J, Miller K D. Contrast-invariant orientation tuning in cat visual cortex:Thalamocortical input tuning and correlation-based intracortical connectivity.[J]. Journal of Neuroscience, 1998, 18:5908-5927.
[73] Tao L, Shelley M, McLaughlin D W, Shapley R. An egalitarian network model for the emergence of simple and complex cells in visual cortex.[J]. Proceedings of National Academy of Sciences of the United States of America, 2004, 101:366-371.
[74] Cai D, Rangan A V, McLaughlin D W. Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1.[J]. Proceedings of National Academy of Sciences of the United States of America, 2005, 102:5868-5873.
[75] Rangan A V, Cai D, McLaughlin D W. Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex.[J]. Proceedings of National Academy of Sciences of the United States of America, 2005, 102:18793-18800.
[76] Rangan A V, Cai D. Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks[J]. Journal of Computational Neuroscience, 2007, 22:81-100.
[77] McLaughlin D W, Shapley R, Shelley M, Wielaard D J. A neuronal network model of macaque primary visual cortex (V1):Orientation selectivity and dynamics in the input layer 4C alpha.[J]. Proceedings of National Academy of Sciences of the United States of America, 2000, 97:8087-8092.
[78] Komatsu Y, Nakajima S, Toyama K, Fetz E E. Intracortical connectivity revealed by spiketriggered averaging in slice preparations of cat visual cortex[J]. Brain Research, 1988, 442:359-362.
[79] Matsumura M, Chen D, Sawaguchi T, Kubota K, Fetz E E. Synaptic interactions between primate precentral cortex neurons revealed by spike-triggered averaging of intracellular membrane potentials in vivo[J]. The Journal of Neuroscience, 1996, 16:7757-7767.
[80] de Boer F, Kuyper P. Triggered Correlation[J]. IEEE Transactions on Biomedical Engineering, 1968, 15:169-179.
[81] Bhalla U S. How To Record a Million Synaptic Weights in a Hippocampal Slice[J]. PLoS Computational Biology, 2008, 4:e1000098.
[82] Pandit S, Wu S. Time series and system analysis with applications[M]. New York:Wiley, 1983.
[83] McQuarrie A, Tai C L. Regression and time series model selection[M]. New Jersey:World Scientific, 1998.
[84] Busse L, Wade A R, Carandini M. Representation of concurrent stimuli by population activity in visual cortex[J]. Neuron, 2009, 64(6):931-942.
[85] Felleman D J, Essen D C V. Distributed hierarchical processing in the primate cerebral cortex[C]. In Cereb cortex. Citeseer, 1991.
[86] Pouget A, Dayan P, Zemel R. Information processing with population codes[J]. Nature Reviews Neuroscience, 2000, 1(2):125-132.
[87] Frostig R D. In vivo optical imaging of brain function[M]. CRC press, 2009.
[88] Blasdel G G, Salama G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex[J]. Nature, 1986, 321(6070):579-585.
[89] Grinvald A, Hildesheim R. VSDI:a new era in functional imaging of cortical dynamics[J]. Nature Reviews Neuroscience, 2004, 5(11):874-885.
[90] Chen Y, Geisler W S, Seidemann E. Optimal decoding of correlated neural population responses in the primate visual cortex[J]. Nature neuroscience, 2006, 9(11):1412-1420.
[91] Palmer C, Cheng S Y, Seidemann E. Linking neuronal and behavioral performance in a reactiontime visual detection task[J]. Journal of Neuroscience, 2007, 27(30):8122-8137.
[92] Chen Y, Geisler W S, Seidemann E. Optimal temporal decoding of neural population responses in a reaction-time visual detection task[J]. Journal of neurophysiology, 2008, 99(3):1366-1379.
[93] Sit Y F, Chen Y, Geisler W S, Miikkulainen R, Seidemann E. Complex dynamics of V1 population responses explained by a simple gain-control model[J]. Neuron, 2009, 64(6):943-956.
[94] Eysel U. Turning a corner in vision research[J]. Nature, 1999, 399(6737):641-643.
[95] Gilbert C D. Horizontal integration and cortical dynamics[J]. Neuron, 1992, 9(1):1-13.
[96] Huntley G W, Vickers J, Janssen W, Brose N, Heinemann S, Morrison J. Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in sensory-motor and visual cortices of monkey and human[J]. Journal of Neuroscience, 1994, 14(6):3603-3619.
[97] Myme C I, Sugino K, Turrigiano G G, Nelson S B. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices[J]. Journal of neurophysiology, 2003, 90(2):771-779.
[98] Mariño J, Schummers J, Lyon D C, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M. Invariant computations in local cortical networks with balanced excitation and inhibition[J]. Nature neuroscience, 2005, 8(2):194-201.
[99] Angelucci A, Levitt J B, Walton E J, Hupe J M, Bullier J, Lund J S. Circuits for local and global signal integration in primary visual cortex[J]. Journal of Neuroscience, 2002, 22(19):8633-8646.
[100] Koch C. Biophysics of computation:information processing in single neurons[M]. Oxford university press, 2004.
[101] DeAngelis G C, Ohzawa I, Freeman R D. Receptive-field dynamics in the central visual pathways[J]. Trends in neurosciences, 1995, 18(10):451-458.
[102] Shoham D, Glaser D E, Arieli A, Kenet T, Wijnbergen C, Toledo Y, Hildesheim R, Grinvald A. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes[J]. Neuron, 1999, 24(4):791-802.
[103] Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity:explanation of the large variability in evoked cortical responses[J]. Science, 1996, 273(5283):1868-1871.
[104] Tolhurst D J, Movshon J A, Dean A F. The statistical reliability of signals in single neurons in cat and monkey visual cortex[J]. Vision research, 1983, 23(8):775-785.
[105] Geisler W S, Albrecht D G. Visual cortex neurons in monkeys and cats:detection, discrimination, and identification[J]. Visual neuroscience, 1997, 14(5):897-919.
[106] Sompolinsky H, Yoon H, Kang K, Shamir M. Population coding in neuronal systems with correlated noise[J]. Physical Review E, 2001, 64(5):051904.
[107] Abbott L F, Dayan P. The effect of correlated variability on the accuracy of a population code[J]. Neural computation, 1999, 11(1):91-101.
[108] Duda R O, Hart P E, Stork D G. Pattern classification[M]. John Wiley & Sons, 2012.
[109] Carandini M, Heeger D J. Summation and division by neurons in primate visual cortex[J]. Science, 1994, 264(5163):1333-1336.
[110] Albrecht D G. Visual cortex neurons in monkey and cat:effect of contrast on the spatial and temporal phase transfer functions[J]. Visual neuroscience, 1995, 12(6):1191-1210.
[111] Zhang J, Newhall K A, Zhou D, Rangan A V. Distribution of correlated spiking events in a population-based approach for integrate-and-fire networks[J]. Journal of Computational Neuroscience, 2014, 36:279-295.
[112] Zhang J, Zhou D, Cai D, Rangan A V. A coarse-grained framework for spiking neuronal networks:between homogeneity and synchrony[J]. Journal of Computational Neuroscience, 2014, 37:81-104.
[113] Shao Y, Zhang J, Tao L. Dimensional reduction of emergent spatiotemporal cortical dynamics via a maximum entropy moment closure[J]. PLoS Computational Biology, 2020, 16:e1007265.
[114] Cai D, Tao L, Rangan A V, McLaughlin D W. Kinetic theory for neuronal network dynamics[J]. Communications in Mathematical Sciences, 2006, 4:97-127.
[115] Rangan A V, Cai D, Tao L, McLaughlin D W. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics[J]. Journal of Computational Physics, 2007, 22:781-798.
[116] Sejnowski T J, Churchland P, Movshon J A. Putting big data to good use in neuroscience[J]. Nature Neuroscience, 2014, 17:1440-1441.
[117] W. L J, Livet J, Sanes J R. A technicolour approach to the connectome[J]. Nature Reviews Neuroscience, 2008, 9:417-422.
[118] Gautrais J, Thorpe S. Rate coding versus temporal order coding:a theoretical approach[J]. Biosystems, 1998, 48:57-65.
[1] 张辉. 水凝胶类软物质材料理论中的数学问题[J]. 计算数学, 2018, 40(1): 1-23.
阅读次数
全文


摘要