• 论文 • 下一篇
袁光伟
袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.
Yuan Guangwei. DIFFUSION SCHEMES SATISFYING EXTREMUM PRINCIPLE ON NONORTHOGONAL MESHES[J]. Mathematica Numerica Sinica, 2021, 43(1): 1-16.
Yuan Guangwei
MR(2010)主题分类:
分享此文:
[1] 李德元, 水鸿寿, 汤敏君. 关于非矩形网格上的二维抛物型方程的差分格式[J]. 数值计算与计算机应用, 1980, 1:217-224. [2] 袁光伟, 扩散方程九点格式的保正性与极值性[J]. 数值计算与计算机应用, 2021, 2: [3] Nordbotten J M, Aavatsmark I, Eigestad G T. Monotonicity of control volume methods[J]. Numer Math, 2007, 106:255-288. [4] Bertolazzi E, Manzini G. A second-order maximum principle preserving volume method for steady convection-diffusion problems[J]. SIAM J. Numer. Anal., 2005, 43:2172-2199. [5] Droniou J. Finite volume schemes for diffusion equations:introduction to and review of modern methods[J]. Math. Mod. Meth. Appl. Sci., 2014, 24:1575-1619. [6] Le Potier C. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators[J]. Int. J. Finite. Vol Meth, 2009, 6:2. [7] Droniou J, Le Potier C. Construction and convergence study of schemes preserving the elliptic local maximum principle[J]. SIAM J. Numer. Anal., 2011, 49:459-490. [8] Sheng Z, Yuan G. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2011, 230:2588-2604. [9] Sheng Z, Yuan G. Construction of nonlinear weighted method for finite volume schemes preserving maximum principle[J]. SIAM J. Sci. Comput., 2018, 40:A607-A628. [10] Yuan G, Yu Y. Existence of solution of a finite volume scheme preserving maximum principle for diffusion equations[J]. Numer. Meth. Part. Diff. Equ., 2018, 34:80-96. [11] Yu Y, Chen X, Yuan G. A Finite Volume Scheme Preserving Maximum Principle for the System of Radiation Diffusion Equations with Three-Temperature[J]. SIAM J. Sci. Comput., 2019, 41:B93-B113. [12] Chang L, Sheng Z, Yuan G. An improvement of the two-point flux approximation scheme on polygonal meshes[J]. J. Comput. Phys., 2019, 392:187-204. [13] Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. McGraw-Hill, New York, 1980. [14] Burchard H, Deleersnijder E, Meister A. A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations[J]. Appl. Numer. Math., 2003, 47:1-30. [15] Gao Y, Yuan G, Wang S, Hang X. A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes[J]. J. Comput. Phys., 2020, 407:109-143. [16] Kuzmin D, Shashkov M J, Svyatskiy D. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems[J]. J. Comput. Phys., 2009, 228:3448-3463. [17] Le Potier C. A nonlinear correction and maximum principle for diffusion operators discretized using cell-centered finite volume schemes[J]. Comptes Rendus Mathematique, 2010, 348:691-695. [18] Le Potier C, Mahamane A. A nonlinear correction and maximum principle for diffusion operators with hybrid schemes[J]. Comptes Rendus Mathematique, 2012, 350:101-106. [19] Cances C, Cathala M, Le Potier C. Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations[J]. Numer Math, 2013, 125:387-417. [20] Le Potier C. A nonlinear second order in space correction and maximum principle for diffusion operators[J]. Comptes Rendus Mathematique, 2014, 352:947-952. [21] 袁光伟. 扩散方程九点格式中网格节点值的计算与分析[J]. 计算物理实验室年报, 2005, 530-575. [22] Sheng Z, Yuan G. A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes. SIAM J. Sci. Comput., 2008, 30:1341-1361. [23] 袁光伟, 岳晶岩, 盛志强, 沈隆钧, 非线性抛物型方程计算方法. 中国科学:数学, 2005, 512-529. [24] Gilbarg D, Trudinger N S. Elliptic Partial Diiferential Equations of Second Order[M]. Springer, 2nd, 2001. [25] Jost J. Partial Diiferential Equations[M]. Springer, 2nd, 2007. [26] Bessemoulin-Chaatard M, Chainais-Hillairet C, Filbet F. On discrete functional inequalities for some finite volume schemes[J]. IMA J Numer Anal, 2014, 1-35. [27] Droniou J, Eymard R, Gallouet T, Herbin R. The Gradient Discretisation Method[M]. Springer, 2018. |
[1] | 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109. |
[2] | 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117. |
[3] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[4] | 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. |
[5] | 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486. |
[6] | 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50. |
[7] | 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405. |
[8] | 张燕美, 兰斌, 盛志强, 袁光伟. 非定常对流扩散方程保正格式解的存在性[J]. 计算数学, 2019, 41(4): 381-394. |
[9] | 贾东旭, 盛志强, 袁光伟. 扩散方程一种无条件稳定的保正并行有限差分方法[J]. 计算数学, 2019, 41(3): 242-258. |
[10] | 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307. |
[11] | 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294. |
[12] | 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155. |
[13] | 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190. |
[14] | 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36. |
[15] | 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||