• 论文 •    下一篇

非正交网格上满足极值原理的扩散格式

袁光伟   

  1. 北京应用物理与计算数学研究所, 北京8009信箱, 北京 100094
  • 收稿日期:2020-03-10 出版日期:2021-02-15 发布日期:2021-02-04
  • 基金资助:
    国家自然科学基金(批准号:11971069)和科学挑战专题(TZ2016002)资助.

袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.

Yuan Guangwei. DIFFUSION SCHEMES SATISFYING EXTREMUM PRINCIPLE ON NONORTHOGONAL MESHES[J]. Mathematica Numerica Sinica, 2021, 43(1): 1-16.

DIFFUSION SCHEMES SATISFYING EXTREMUM PRINCIPLE ON NONORTHOGONAL MESHES

Yuan Guangwei   

  1. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088, China
  • Received:2020-03-10 Online:2021-02-15 Published:2021-02-04
构造了非正交网格上扩散方程新的非线性单元中心型有限体积格式, 证明了该格式满足离散极值原理, 且在适当条件下具有强制性、以及在离散H1范数下解的有界性和一阶收敛性.
In this paper, we construct some diffusion schemes preserving extremum principle on nonorthogonal meshes. It is proved that under appropriate conditions the scheme is coercive, as well as the boundedness and first-order convergence of the discrete solution in the discrete H1 norm.

MR(2010)主题分类: 

()
[1] 李德元, 水鸿寿, 汤敏君. 关于非矩形网格上的二维抛物型方程的差分格式[J]. 数值计算与计算机应用, 1980, 1:217-224.
[2] 袁光伟, 扩散方程九点格式的保正性与极值性[J]. 数值计算与计算机应用, 2021, 2:
[3] Nordbotten J M, Aavatsmark I, Eigestad G T. Monotonicity of control volume methods[J]. Numer Math, 2007, 106:255-288.
[4] Bertolazzi E, Manzini G. A second-order maximum principle preserving volume method for steady convection-diffusion problems[J]. SIAM J. Numer. Anal., 2005, 43:2172-2199.
[5] Droniou J. Finite volume schemes for diffusion equations:introduction to and review of modern methods[J]. Math. Mod. Meth. Appl. Sci., 2014, 24:1575-1619.
[6] Le Potier C. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators[J]. Int. J. Finite. Vol Meth, 2009, 6:2.
[7] Droniou J, Le Potier C. Construction and convergence study of schemes preserving the elliptic local maximum principle[J]. SIAM J. Numer. Anal., 2011, 49:459-490.
[8] Sheng Z, Yuan G. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2011, 230:2588-2604.
[9] Sheng Z, Yuan G. Construction of nonlinear weighted method for finite volume schemes preserving maximum principle[J]. SIAM J. Sci. Comput., 2018, 40:A607-A628.
[10] Yuan G, Yu Y. Existence of solution of a finite volume scheme preserving maximum principle for diffusion equations[J]. Numer. Meth. Part. Diff. Equ., 2018, 34:80-96.
[11] Yu Y, Chen X, Yuan G. A Finite Volume Scheme Preserving Maximum Principle for the System of Radiation Diffusion Equations with Three-Temperature[J]. SIAM J. Sci. Comput., 2019, 41:B93-B113.
[12] Chang L, Sheng Z, Yuan G. An improvement of the two-point flux approximation scheme on polygonal meshes[J]. J. Comput. Phys., 2019, 392:187-204.
[13] Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. McGraw-Hill, New York, 1980.
[14] Burchard H, Deleersnijder E, Meister A. A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations[J]. Appl. Numer. Math., 2003, 47:1-30.
[15] Gao Y, Yuan G, Wang S, Hang X. A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes[J]. J. Comput. Phys., 2020, 407:109-143.
[16] Kuzmin D, Shashkov M J, Svyatskiy D. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems[J]. J. Comput. Phys., 2009, 228:3448-3463.
[17] Le Potier C. A nonlinear correction and maximum principle for diffusion operators discretized using cell-centered finite volume schemes[J]. Comptes Rendus Mathematique, 2010, 348:691-695.
[18] Le Potier C, Mahamane A. A nonlinear correction and maximum principle for diffusion operators with hybrid schemes[J]. Comptes Rendus Mathematique, 2012, 350:101-106.
[19] Cances C, Cathala M, Le Potier C. Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations[J]. Numer Math, 2013, 125:387-417.
[20] Le Potier C. A nonlinear second order in space correction and maximum principle for diffusion operators[J]. Comptes Rendus Mathematique, 2014, 352:947-952.
[21] 袁光伟. 扩散方程九点格式中网格节点值的计算与分析[J]. 计算物理实验室年报, 2005, 530-575.
[22] Sheng Z, Yuan G. A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes. SIAM J. Sci. Comput., 2008, 30:1341-1361.
[23] 袁光伟, 岳晶岩, 盛志强, 沈隆钧, 非线性抛物型方程计算方法. 中国科学:数学, 2005, 512-529.
[24] Gilbarg D, Trudinger N S. Elliptic Partial Diiferential Equations of Second Order[M]. Springer, 2nd, 2001.
[25] Jost J. Partial Diiferential Equations[M]. Springer, 2nd, 2007.
[26] Bessemoulin-Chaatard M, Chainais-Hillairet C, Filbet F. On discrete functional inequalities for some finite volume schemes[J]. IMA J Numer Anal, 2014, 1-35.
[27] Droniou J, Eymard R, Gallouet T, Herbin R. The Gradient Discretisation Method[M]. Springer, 2018.
[1] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[2] 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117.
[3] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[4] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[5] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[6] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50.
[7] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
[8] 张燕美, 兰斌, 盛志强, 袁光伟. 非定常对流扩散方程保正格式解的存在性[J]. 计算数学, 2019, 41(4): 381-394.
[9] 贾东旭, 盛志强, 袁光伟. 扩散方程一种无条件稳定的保正并行有限差分方法[J]. 计算数学, 2019, 41(3): 242-258.
[10] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.
[11] 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[12] 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155.
[13] 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190.
[14] 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36.
[15] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
阅读次数
全文


摘要