• 论文 • 上一篇    

简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计

曾玉平1, 翁智峰2, 胡汉章1   

  1. 1. 嘉应学院数学学院, 梅州 514015;
    2. 华侨大学数学科学学院, 泉州 362021
  • 收稿日期:2019-04-13 发布日期:2021-05-13
  • 基金资助:
    国家自然科学基金(No.11526097,No.11701197)、广东省自然科学基金(No.2020A1515011032,No.2018A0303100016)资助.

曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176.

Zeng Yuping, Weng Zhifeng, Hu Hanzhang. A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WOPSIP DG METHOD FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM[J]. Mathematica Numerica Sinica, 2021, 43(2): 162-176.

A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WOPSIP DG METHOD FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM

Zeng Yuping1, Weng Zhifeng2, Hu Hanzhang1   

  1. 1. School of Mathematics, Jiaying University, Meizhou 514015, China;
    2. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
  • Received:2019-04-13 Published:2021-05-13
本文讨论了简化摩擦接触问题的一类对称弱超内罚间断Galerkin方法.首先,在能量范数意义下得到最优先验误差估计.进一步,我们推导了一类残量型后验误差估计子,并证明了它的可靠性和有效性.
In this paper, we propose a weakly over-penalized symmetric interior penalty discontinuous Galerkin method to solve a simplified frictional contact problem, First, an optimal a priori error estimate in the energy norm is obtained. Additionally, we derive a residual-based a posteriori error estimator which is proved to be reliable and efficient.

MR(2010)主题分类: 

()
[1] Arnold D N, Brezzi F, Cockburn B, Marini L D. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J. Numer. Anal., 2002, 39:1749-1779.
[2] Atkinson K, Han W. Theoretical Numerical Analysis. A Functional Analysis Framework (3rd edn)[M]. Springer, 2009.
[3] Barker A T, Brenner S C. A mixed finite element method for the Stokes equations based on a weakly over-penalized symmetric interior penalty approach[J]. J. Sci. Comput., 2014, 58:290-307.
[4] Bartels S, Carstensen C. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems[J]. Numer. Math., 2014, 99:225-249.
[5] Ben Belgacem F. Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method[J]. SIAM J. Numer. Anal., 2000, 37:1198-1216.
[6] Bösing P R, Carstensen C. Discontinuous Galerkin with weakly over-penalized techniques for Reissner-Mindlin plates[J]. J. Sci. Comput., 2015, 64:401-424.
[7] Banz L, Stephan E P. A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic obstacle problems[J]. Appl. Numer. Math., 2014, 76:76-92.
[8] Bostan V, Han W. Recovery-based error estimation and adaptive solution of elliptic variational inequalities of the second kind[J]. Commun. Math. Sci., 2004, 2:1-18.
[9] Bostan V, Han W. A posteriori error analysis for finite element solutions of a frictional contact problem[J]. Comput. Methods Appl. Mech. Eng., 2006, 195:1252-1274.
[10] Bostan V, Han W, Reddy B. A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind[J]. Appl. Numer. Math., 2004, 52:13-38.
[11] Braess D. A posteriori error estimators for obstacle problems-another look[J]. Numer. Math., 2005, 101:415-421.
[12] Brenner S C. Forty Years of the Crouzeix-Raviart element[J]. Numer. Methods PDEs., 2015, 31: 367-396.
[13] Brenner S C, Owens L, Sung L Y. A weakly over-penalized symmetric interior penalty method[J]. Electron. Trans. Numer. Anal., 2008, 30:107-127.
[14] Brenner S C, Gudi T, Sung L Y. A posteriori error control for a weakly over-penalized symmetric interior penalty method[J]. J. Sci. Comput. 2009, 40:37-50.
[15] Brenner S C, Gudi T, Sung L Y. An intrinsically parallel finite element method[J]. J. Sci. Comput., 2010, 42:118-121.
[16] Brenner S C, Gudi T, Sung L Y. A weakly over-penalized symmetric interior penalty method for the biharmonic problem, Electron[J]. Trans. Numer. Anal., 2010, 37:214-238.
[17] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods (3rd edn)[M]. Springer-Verlag, New York, 2008.
[18] Brezzi F, Hager W W, Raviart P A. Error estimates for the finite element solution of variational inequalities. Part I:primal theory[J]. Numer. Math., 1997, 28:431-443.
[19] Carstensen C, Hu J. An optimal adaptive finite element method for an obstacle problem[J]. Comput. Methods Appl. Math., 2015, 15:259-277.
[20] Carstensen C, Köhler K. Nonconforming FEM for the obstacle problem[J]. IMA J. Numer. Anal., 2017, 37:64-93.
[21] Chen Z, Nochetto R. Residual type a posteriori error estimates for elliptic obstacle problems[J]. Numer. Math., 2000, 84:527-548.
[22] Crouzeix M, Raviart P A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[J]. RAIRO Anal. Numér., 1973, 7:33-75.
[23] Djoko J K. Discontinuous Galerkin finite element methods for variational inequalities of first and second kinds[J]. Numer. Methods PDEs., 2008, 24:296-311.
[24] Falk R S. Error estimates for the approximation of a class of variational inequalities[J]. Math. Comput., 1974, 28:963-971.
[25] Feng F, Han W, Huang J. Virtual element methods for elliptic variational inequalities of the second kind[J]. J. Sci. Comput., 2019, 80:60-80.
[26] Glowinski R. Numerical Methods for Nonlinear Variational Problems[M]. Springer-Verlag, Berlin, 2008.
[27] Gudi T, Kamana P. A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems[J]. Math. Comput., 2014, 83:579-602.
[28] Gudi T, Kamana P. A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem, J. Comput. Appl. Math., 2016, 292:257-278.
[29] Hage D, Klein N, Suttmeier F T. Adaptive finite elements for a certain class of variational inequalities of second kind[J]. Calcolo, 2011, 48:293-305.
[30] Hild P, Nicaise S. A posteriori error estimates of residual type for Signorini's problem[J]. Numer. Math., 2005, 101:523-549.
[31] Hua D, Wang L. The nonconforming finite element method for Signorini problem[J]. J. Comput. Math., 2007, 25:67-80.
[32] Karakashian O A. Pascal F. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems[J]. SIAM J. Numer. Anal., 2003, 41:2374-2399.
[33] Kikuchi N, Oden J T. Contact Problems in Elasticity:A Study of Variational Inequalities and Finite Element Methods[M]. SIAM, Philadelphia, 1988.
[34] Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications[M]. Academic Press, New York, 1980.
[35] Krause R, Veeser A, Walloth M. An efficient and reliable residual-type a posteriori error estimator for the Signorini problem[J]. Numer. Math., 2015, 130:151-197.
[36] Liu W, Yan N. A posteriori error estimators for a class of variational inequalities[J]. J. Sci. Comput., 2000, 15:361-393.
[37] Porwal K, Discontinuous Galerkin methods for a contact problem with Tresca friction arising in linear elasticity[J]. Appl. Numer. Math., 2017, 112:182-202.
[38] Shi D, Ren J, Gong W. Convergence and superconvergence analysis of a nonconforming finite element method for solving the Signorini problem[J]. Nonlinear Anal. RWA., 2012, 75:3493- 3502.
[39] Shi D, Xu C. EQ1rot nonconforming finite element approximation to Signorini problem[J]. Sci. China Math., 2013, 56:1301-1311.
[40] Shi D, Pei L. Double set parameter finite element method for two-sided displacement obstacle problem of clamped plate[J]. J. Math. Anal. Appl., 2016, 436:203-216.
[41] 石钟慈, 王鸣. 有限元方法[M]. 科学出版社, 2010.
[42] Veeser A. Efficient and reliable a posteriori error estimators for elliptic obstacle problems[J]. SIAM J. Numer. Anal., 2001, 39:146-167.
[43] Verfürth R. A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques[M]. Wiley-Teubner, New York, 1996.
[44] Wang F, Han W. Another view for a posteriori error estimates for variational inequalities of the second kind[J]. Appl. Numer. Math., 2013, 72:225-233.
[45] Wang F, Han W. Reliable and efficient a posteriori error estimates of DG methods for a simplified frictional contact problem[J]. Int. J. Numer. Anal. Model., 2019, 16:49-62.
[46] Wang F, Han W, Cheng X. Discontinuous Galerkin methods for solving elliptic variational inequalities[J]. SIAM J. Numer. Anal., 2010, 48:708-733.
[47] Wang F, Han W, Cheng X. Discontinuous Galerkin methods for solving the Signorini problem[J]. IMA. J. Numer. Anal., 2011, 31:1754-1772.
[48] Wang F, Han W, Eichholz J, Cheng X. A posteriori error estimates for discontinuous Galerkin methods of obstacle problems[J]. Nonlinear Anal. RWA., 2015, 22:664-679.
[49] Wang F, Wei H. Virtual element methods for the obstacle problem[J]. IMA J. Numer. Anal., 2020, 40:708-728.
[50] Wang L. On the quadratic finite element approximation to the obstacle problem[J]. Numer. Math., 2002, 92:771-778.
[51] Wang L. On the error estimate of nonconforming finite element approximation to the obstacle problem[J]. J. Comput. Math., 2003, 21:481-490.
[52] Wohlmuth B. Variationally consistent discretization schemes and numerical algorithms for contact problems[J]. Acta Numer., 2011, 20:569-734.
[53] Zeng Y, Chen J, Wang F. Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities[J]. Comput. Math. Appl., 2015, 69:760-770.
[54] Zeng Y, Chen J, Wang F. A posteriori error estimates of a weakly over-penalized symmetric interior penalty method for elliptic eigenvalue problems[J]. East Asian J. Appl. Math., 2015, 5: 327-341.
[55] Zeng Y, Chen J, Wang F, Meng Y. A priori and a posteriori error estimates of a weakly overpenalized interior penalty method for non-self-adjoint and indefinite problems[J]. J. Comput. Math., 2014, 32:332-347.
[56] Zhang T, Tang L. Finite volume method for the variational inequalities of first and second kinds[J]. Math. Methods Appl. Sci., 2015, 38:3980-3989.
[57] Zou Q, Veeser A, Kornhuber R, Cräser C. Hierarchical error estimates for the energy functional in obstacle problems[J]. Numer. Math., 2011, 117:653-677.
[1] 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32.
[2] 江正华, 牛欣, 朱楚. 运用Poincaré-Miranda定理数值验证变分不等式解的存在性[J]. 计算数学, 2021, 43(1): 56-69.
[3] 陈园. 无单调性集值变分不等式的一种投影算法[J]. 计算数学, 2020, 42(4): 435-444.
[4] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[5] 张铁, 冯男, 史大涛. 求解椭圆边值问题惩罚形式的间断有限元方法[J]. 计算数学, 2010, 32(3): 275-284.
[6] 孙萍, 罗振东, 陈静. 二阶椭圆问题的混合有限元法的泡函数稳定性及其后验误差估计[J]. 计算数学, 2008, 30(3): 327-336.
[7] 肖捷,刘韶鹏,. 求解间断系数椭圆型问题的一种改进的DG方法[J]. 计算数学, 2007, 29(4): 377-390.
[8] 赵志勇,胡健伟,孙琳. 对流扩散方程迎风有限元的自适应方法[J]. 计算数学, 2005, 27(4): 337-354.
[9] 石超峰,刘三阳,连军莉,房宝娣. 一般单调变分不等式的一个改进的预估-校正算法[J]. 计算数学, 2005, 27(2): 113-120.
[10] 石东洋,毛士鹏,陈绍春. 问题变分不等式的一类各向异性Crouzeix-Raviart型有限元逼近[J]. 计算数学, 2005, 27(1): 45-54.
[11] 张铁. 美式债券期权定价问题的有限元方法[J]. 计算数学, 2004, 26(3): 277-284.
[12] 李飞,徐成贤. 求解带均衡约束数学规划问题的一个连续化方法[J]. 计算数学, 2004, 26(1): 3-12.
[13] 王长钰,屈彪. 通过广义D-间隙函数求解变分不等式问题的全局收敛性和误差界估计[J]. 计算数学, 2003, 25(4): 435-446.
[14] 张铁,李长军. 关于一个第二类变分不等式的有限元逼近[J]. 计算数学, 2003, 25(3): 257-264.
[15] 石东洋,陈绍春,获原一郎. 位移障碍下四阶变分不等式问题的非协调有限元一般误差估计式[J]. 计算数学, 2003, 25(1): 99-6.
阅读次数
全文


摘要