• 论文 • 上一篇    下一篇

多辛Dirac方程的高阶整体保能量格式

袭春晓, 孙建强, 孔嘉萌   

  1. 海南大学信息科学技术学院, 海口 570228
  • 收稿日期:2018-10-15 出版日期:2020-05-15 发布日期:2020-05-15
  • 基金资助:

    国家自然科学基金(11961020,11561018)资助.

袭春晓, 孙建强, 孔嘉萌. 多辛Dirac方程的高阶整体保能量格式[J]. 计算数学, 2020, 42(2): 237-245.

Xi Chunxiao, Sun Jianqiang, Kong Jiameng. HIGH ORDER GLOBAL ENERGY-PRESERVING SCHEME OF THE DIRAC EQUATION[J]. Mathematica Numerica Sinica, 2020, 42(2): 237-245.

HIGH ORDER GLOBAL ENERGY-PRESERVING SCHEME OF THE DIRAC EQUATION

Xi Chunxiao, Sun Jianqiang, Kong Jiameng   

  1. College of Information Science and Technology, Hainan University, Haikou 570228, China
  • Received:2018-10-15 Online:2020-05-15 Published:2020-05-15
基于四阶平均向量场方法和拟谱方法构造了Dirac方程的高阶整体保能量格式,利用构造的高阶整体保能量格式数值模拟方程孤立波的演化行为.数值模拟结果表明构造的高阶整体保能量格式可以很好地模拟Dirac方程孤立波的演化行为,并且可以精确地保持方程的整体能量守恒特性.
The high order global energy-preserving scheme of the Dirac equation is obtained by the fourth order average vector field method and the Fourier pseudosmethod.The high order global energy-preserving scheme is applied to simulate the evolution behaviors of the equation.Numerical results show that the global energy-preserving scheme can well simulate the wave evolution behaviors of Dirac equation in long time and preserve the global energy conservation.

MR(2010)主题分类: 

()
[1] Marsden J E and Shkoller S. Multisymplectic geometry, covariant Hamiltonians, and water waves[J]. Proc. Comb. Phil. Soc., 1999, 125:553-575.

[2] Bridges T J. Multi-symplectic structures and wave propagation[J]. Math. Proc. Camb. Phil. Soc., 1997, 121:147-190.

[3] Bridges T J and Reich S. Multi-symplectic integrators:Numerical schemes for Hamiltonian PDEs that conserve symplecticity[J]. Phys. Lett. A., 2001, 284:184-193.

[4] Reich S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equation[J]. Comput. Phys., 2000, 157:473-499.

[5] Bridges T J and Reich S. Numerical methods for Hamiltonian PDEs[J]. Phys A:Math. Gen., 2006, 39(19):5287-5320.

[6] Bridges T J and Reich S. Multi-symplectic spectral discretization for the Zakharov-Kaznetsov and shallow water equation[J]. Physica D., 2001, 152:491-504.

[7] Islas A L and Schober C M. Multi-symplectic methods for generalized schrodinger equation[J]. Future Gener. Comput. Syst., 2003, 19:403-413.

[8] Hong J L and Li C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations[J]. Comput. Phys., 2006, 211:448-472.

[9] Wang Y S and Hong J L. Multi-symplectic algorithms for Hamiltonian partial differential equation[J]. Commun. Appl. Math. Comput., 2014, 27:163-230.

[10] McLachlan R I, Quispel G R W and Robidoux N. Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A., 1999, 357:1021-1046.

[11] Quispel G R W and McLaren D I. A new class of energy-preserving numerical integration methods[J]. Phys. A., 2008, 41:045206.

[12] Matsuo T. New conservative schemes with discrete varivational derivatives for nonlinear wave equations[J]. Comput. Appl. Math., 2007, 203(1):32-56.

[13] Furihata D. Finite difference schemes for ∂u/∂t=(∂/∂x)α∂G/∂u that inherit energy conservation or dissipation property[J]. Comput. Phys., 1999, 156(1):181-205.

[14] Brugnano L, Iavernaro F and Trigiante D. Hamiltonian boundary value methods (Energy preserving discrete line integral methods)[J]. Numeri. Anal., Industrial and Appl. Math., 2010, 5(1-2):17-37.

[15] Brugnano L, Iavernaro F and Trigiante D. A note on the efficient implementation of Hamiltonian BVMs[J]. Comput. and Appl. Math., 2011, 236:375-383.

[16] Wang Y S, Cai J X. A conservative fourier pseudospectral algorithm for a coupled nonline schroedinger system[J]. Chinese Physics B., 2013, 22(6):135-140.

[17] Gong Y Z, Cai J X and Wang Y S. Some new structure-preserving algorithms for general multisymplectic formulation of Hamitonian PDEs[J]. Computational Physics., 2014, 279:80-102.

[18] Yang Y H, Wang Y S and Song Y Z. A new local energy-preserving algorithm for the BBM equation[J]. Appl. Math. and Comput., 2018, 324:119-130.

[19] Zhang H, Song S H Chen X D and Zhou W E. Average vector field methods for the coupled Schrödinger-KdV equations[J]. Chin. Phys. B., 2014, 23(7):070208.

[20] Jiang C L, Sun J Q, He X F and Zhou L L. High order energy-preserving method of the "Good" Boussinesq equation[J]. Numer. Math. Theor. Meth. Appl., 2016, 9(1):111-112.

[21] Jiang C L, Sun J Q, Li H C and Wang Y F.A fourth-order AVF method for the numerical integration of sine-Gordon equation[J]. Appl. Math. Comput., 2017, 313:144-158.

[22] Chen J B, Qin M Z. Multi-synplectic Foueier pseudospectral method for the Schrödinger equation[J]. Electr. Numer. Anal., 2001, 12:193-204.

[23] Wang J. A note on multi-symplectic Fourier pseudospectral discretization for the nonlinear Schrödinger equation[J]. Appl. Math. Comput., 2007, 191:31-41.

[24] Alvarez A. Linear Crank-Nicholsen scheme for nonlinear Dirac equations[J]. J. Comput. Phys., 1992, 99:348-350.
[1] 赵鑫, 孙建强, 何雪珺. Cahn-Hilliard方程的高阶保能量散逸性方法[J]. 计算数学, 2015, 37(2): 137-147.
阅读次数
全文


摘要