• 论文 • 上一篇    下一篇

求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法

吴敏华1, 李郴良2   

  1. 1. 广东金融学院金融数学与统计学院, 广州 510521;
    2. 桂林电子科技大学数学与计算科学学院, 广西高校数据分析与计算重点实验室, 桂林 541004
  • 收稿日期:2018-10-14 出版日期:2020-05-15 发布日期:2020-05-15
  • 通讯作者: 李郴良,Email:chenli@guet.edu.cn
  • 基金资助:

    国家自然科学基金项目(11661027)、广西自然科学基金项目资助(2015GXNSFAA139014)和国家重大仪器专项(61627807)资助.

吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.

Wu Minhua, Li Chenliang. A PRECONDITIONED MODULUS-BASED MATRIX SPLITTING ITERATION METHOD FOR SOLVING THE LINEAR COMPLEMENTARITY PROBLEM WITH TOEPLITZ MATRIX[J]. Mathematica Numerica Sinica, 2020, 42(2): 223-236.

A PRECONDITIONED MODULUS-BASED MATRIX SPLITTING ITERATION METHOD FOR SOLVING THE LINEAR COMPLEMENTARITY PROBLEM WITH TOEPLITZ MATRIX

Wu Minhua1, Li Chenliang2   

  1. 1. Guangdong University of Finance School of Financial Mathematics&Statistics, Guangzhou 510521, China;
    2. School of Mathematics and Computing Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, China
  • Received:2018-10-14 Online:2020-05-15 Published:2020-05-15
针对系数矩阵为对称正定Toeplitz矩阵的线性互补问题,本文提出了一类预处理模系矩阵分裂迭代方法.先通过变量替换将线性互补问题转化为一类非线性方程组,然后选取Strang或T.Chan循环矩阵作为预优矩阵,利用共轭梯度法进行求解.我们分析了该方法的收敛性.数值实验表明,该方法是高效可行的.
In this paper, a preconditioned modulus-based matrix splitting iteration method is presented for solving the linear complementarity problem with a symmetric positive-defined Toeplitz matrix. Firstly we transformed the linear complementarity problem into a nonlinear equations, then solve it by using preconditioned conjugate gradient method with Strang precondition matrix or T.Chan precondition matrix. We analyzed the convergence of the new method, and confirmed its efficiency through some numerical examples.

MR(2010)主题分类: 

()
[1] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2010, 17(6):917-933.

[2] Bai Z Z, Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems[J]. Numerical Algorithms, 2013, 62:59-77.

[3] Belsky V. A multi-grid method for variational inequalities in contact problems[J]. Computing, 1993, 51(3-4):293-311.

[4] Chan R H, Ng M K. Conjugate Gradient Methods for Toeplitz Systems[J]. SIAM Review, 1996, 38(3):427-482.

[5] Dong J L, Jiang M Q. A modified modulus method for symmetric positive-definite linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2010, 16(2):129-143.

[6] Jin X Q. Preconditioning techniques for Toeplitz systems[M]. Beijing, Higher Education Press, 2010.

[7] Li W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices[J]. Applied Mathematics Letters, 2013, 26:1159-1164.

[8] 刘仲云, 吴念慈, 秦小蓉等. 实对称正定Toeplitz矩阵的带位移的Sine预处理子[J]. 数学理论与应用, 2017, 1:1-6.

[9] Strang G. A Proposal for Toeplitz Matrix Calculations[J]. Studies in Applied Mathematics, 1986, 74(2):171-176.

[10] Tyrtyshnikov E E. Optimal and superoptimal circulant preconditioners[J]. Society for Industrial and Applied Mathematics, 1992.

[11] Vollebregt E A H. A new solver for the elastic normal contact problem using conjugate gradients, deflation, and an FFT-based preconditioner[J]. Journal of Computational Physics, 2014, 257(PA):333-351.

[12] 徐树方. 数值线性代数[M]. 北京大学出版社, 2000.

[13] Zhao J, Vollebregt E A H, Oosterlee C W. A Full Multigrid Method for Linear Complementarity Problems arising from Elastic Normal Contact Problems[J]. Mathematical Modelling and Analysis, 2014, 19(2):216-240.

[14] 张丽丽. 关于线性互补问题的模系矩阵分裂迭代方法[J]. 计算数学, 2012, 34:373-386.

[15] Zheng H, Li W, SeakwengVong. A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems[J]. Numerical Algorithms, 2017, 74(1):137-152.

[16] Zheng N, Yin J F. Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H+-matrix[J]. Journal of Computational and Applied Mathematics, 2014, 260:281-293.
[1] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
[2] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[3] 李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103.
[4] 韩如意, 王川龙. Toeplitz矩阵填充的四种流形逼近算法比较[J]. 计算数学, 2018, 40(3): 325-336.
[5] 郑华, 罗静. 一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法[J]. 计算数学, 2018, 40(1): 24-32.
[6] 刘丽霞, 王川龙. 基于均值的Toeplitz矩阵填充的子空间算法[J]. 计算数学, 2017, 39(2): 179-188.
[7] 甘小艇, 殷俊锋. 二次有限体积法定价美式期权[J]. 计算数学, 2015, 37(1): 67-82.
[8] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194.
[9] 张丽丽. 关于线性互补问题的模系矩阵分裂迭代方法[J]. 计算数学, 2012, 34(4): 373-386.
[10] 刘仲云, 刘成志, 张育林. 对称正定Toeplitz方程组的多级迭代求解[J]. 计算数学, 2012, 34(4): 397-404.
[11] 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372.
[12] 蒋娟, 沈祖和, 曹德欣. 一类线性互补问题解存在性判断的区间方法[J]. 计算数学, 2009, 31(2): 159-166.
[13] 王华, 乌力吉. 垂直线性互补问题的一种光滑算法[J]. 计算数学, 2009, 31(1): 1-14.
[14] 屈彪,王长钰,张树霞,. 一种求解非线性互补问题的方法及其收敛性[J]. 计算数学, 2006, 28(3): 247-258.
[15] 乌力吉,陈国庆. 非线性互补问题的一种新的光滑价值函数及牛顿类算法[J]. 计算数学, 2004, 26(3): 315-328.
阅读次数
全文


摘要