• 青年评述 •    下一篇

电子结构计算的数值方法与理论

戴小英1,2   

  1. 1. LSEC, 中国科学院数学与系统科学研究院, 计算数学与科学工程计算研究所, 北京 100190;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2020-04-24 出版日期:2020-05-15 发布日期:2020-05-15
  • 基金资助:

    国家重点研发计划项目(2019YFA0709601)、国家自然科学基金(91730302、11671389)和中国科学院前沿科学重点研究项目(QYZDJ-SSW-SYS010).

戴小英. 电子结构计算的数值方法与理论[J]. 计算数学, 2020, 42(2): 131-158.

Dai Xiaoying. NUMERICAL METHODS AND THEORIES FOR ELECTRONIC STRUCTURE CALCULATIONS[J]. Mathematica Numerica Sinica, 2020, 42(2): 131-158.

NUMERICAL METHODS AND THEORIES FOR ELECTRONIC STRUCTURE CALCULATIONS

Dai Xiaoying1,2   

  1. 1. LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-04-24 Online:2020-05-15 Published:2020-05-15
第一原理电子结构计算已成为探索与研究物质机理、理解与预测材料性质的重要手段和工具.虽然第一原理电子结构计算取得了巨大的成功,但是如何利用高性能计算机又快又好地计算大规模体系,如何从数学角度理解电子结构模型的合理性与计算的可靠性和有效性,依然充满各种挑战.基于密度泛函理论的第一原理电子结构计算的核心数学模型为Kohn-Sham方程或相应的Kohn-Sham能量泛函极小问题.近年来,人们分别从非线性算子特征值问题的高效离散及Kohn-Sham能量泛函极小问题的最优化方法设计两个方面对电子结构计算的高效算法设计及分析展开了诸多研究.本文重点介绍我们小组在电子结构计算的方法与理论方面的一些进展,同时简单介绍该领域存在的困难与挑战.
The first principles electronic structure calculations have become important tools for studying the material mechanism, understanding and predicting the material properties, and have achieved great success. However, it is still full of challenge for how to design highly efficient and highly accurate computational methods to deal with larger system, how to understand the reliability and efficiency of calculation from a mathematical point of view. Based on the Kohn-Sham DFT, the key mathematical modes for electronic structure calculations are the Kohn-Sham equation or the Kohn-Sham energy functional minimization problem. In the past decades, the highly efficient algorithms design and numerical analysis have attracted the attention of many distinguished mathematicians. Our group have also focused on this field and have done several works. In this paper, we introduce recent progresses in this field, mainly about those done by our group.

MR(2010)主题分类: 

()
[1] Adams R A. Sobolev Spaces, Academic Press, New York, 1975.

[2] Anderson D G. Iterative procedures for nonlinear integral equations[J]. J. Assoc. Comput. Mach., 1965, 12:547-560.

[3] Bai Z, Demmel J, Dongarra J, Ruhe A and van der Vorst H, editors. Templates for the Solution of Algebraic Eigenvalue Problems:A Practical Guide. SIAM, Philadelphia, 2000.

[4] Bao G, Hu G and Liu D. Numerical solution of the Kohn-Sham equation by finite element methods with an adaptive mesh redistribution technique[J]. J. Sci. Comput., 2013, 55:372-391.

[5] Beck T L. Real-space mesh techniques in density-function theory[J]. Rev. Mod. Phys., 2000, 72:1041-1080.

[6] Becke A D. A new mixing of Hartree-Fock and local density-functional theories[J]. J. Chem. Phys., 1993, 98:1372-1377.

[7] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993, 98:5648-5652.

[8] Blöchl P E. Generalized separable potentials for electronic-structure calculations[J]. Phys. Rev. B, 1990, 41:5414-5416.

[9] Born M and Oppenheimer J R. Zur quantentheorie der Molekeln[J]. Ann. Physik, 1927, 84:457-484.

[10] Broyden C G. A class of methods for solving nonlinear simultaneous equations[J]. Math. Comput., 1965, 19:577-593.

[11] Cai Y, Zhang L, Bai Z, and Li R. On an eigenvector-dependent nonlinear eigenvalue problem[J]. SIAM J. Matrix Anal. Appl., 2018, 39:1360-1382.

[12] Calvetti D, Reichel L, Sorensen D C. An implicitly restarted Lanczos method for large symmetric eigenvalue problems[J]. Electron T. Numer. Ana., 1994, 2:1-21.

[13] Cancès E, Chakir R, and Maday Y. Numerical analysis of nonlinear eigenvalue problems[J]. J. Sci. Comput., 2010, 45:90-117.

[14] Cancès E, Chakir R, and Maday Y. Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models[J]. M2AN, 2012, 46:341-388.

[15] Cascon J M, Kreuzer C, Nochetto R H, and Siebert K G. Quasi-optimal convergence rate for an adaptive finite element method[J]. SIAM J. Numer. Anal., 2008, 46:2524-2550.

[16] 陈华杰. 密度泛函理论的有限维逼近[D]. 中国科学院研究生院博士论文, 2010.

[17] Chen H, Dai X, Gong X, He L, and Zhou A. Adaptive finite element approximations for Kohn-Sham models[J]. Multiscale Model. Simul., 2014, 12:1828-1869.

[18] Chen H, Gong X, He L, Yang Z, and Zhou A. Numerical analysis of finite dimensional approximations of Kohn-Sham equations[J]. Adv. Comput. Math., 2013, 38:225-256.

[19] Chen H, Gong X, He L, and Zhou A. Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics[J]. Adv. Appl. Math. Mech., 2011, 3:493-518.

[20] Chen H, He L, and Zhou A. Finite element approximations of nonlinear eigenvalue problems in quantum physics[J]. Comput. Methods Appl. Mech. Engrg., 2011, 200:1846-1865.

[21] Ciarlet P G. The Finite Element Method for Elliptic Problems. North-Holland, 1978.

[22] Cramer C J. Essentials of Computational Chemistry:Theories and Models. Wiley, 2002.

[23] 戴小英. 第一原理电子结构计算的有限元自适应及局部算法研究[D]. 中国科学院研究生院博士论文, 2008.

[24] 戴小英, 高兴誉, 周爱辉. 特征值问题的Davidson型方法及其实现技术[J]. 数值计算与计算机应用, 2006, 27:218-240.

[25] Dai X, Gong X, Yang Z, Zhang D, and Zhou A. Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations[J]. Multiscale Model. Simul., 2011, 9:208-240.

[26] Dai X, Gong X, Zhou A, and Zhu J. A parallel orbital-updating approach for electronic structure calculations[J]. Multiscale Model. Simul., 2014, 12:182-1869.

[27] Dai X, He L, and Zhou A. Convergence rate and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues[J]. IMA J Numer. Anal., 2015, 35:1934-1977.

[28] Dai X, Liu Z, Zhang X and Zhou A. A parallel orbital-updating based optimization method for electronic structure calculations. arXiv:1510.07230(2015).

[29] Dai X, Liu Z, Zhang L and Zhou A. A conjugate gradient method for electronic structure calculations[J]. SIAM J. Sci. Comput., 2017, 39:A2702-A2740.

[30] Dai X, Xu J, and Zhou A. Convergence and optimal complexity of adaptive finite element eigenvalue computations[J]. Numer. Math., 2008, 110:313-355.

[31] Dai X, Zhang L, and Zhou A. An adaptive step size strategy for orthogonality constrained line search methods. arXiv:1906.02883(2019).

[32] Dai X, Zhang L and Zhou A. Pactical Newton methods for electronic structure calculations. arXiv:2001.09285(2020).

[33] 戴小英, 周爱辉. 电子结构计算的有限元方法[J]. 中国科学:化学, 2015, 45:800-811.

[34] 戴小英, 周爱辉. 第一原理实空间并行自适应计算程序设计原理[J]. 中国科学:信息科学, 2016, 46:1421-1441.

[35] Dai Y and Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property[J]. SIAM J. Optim., 1999, 10:177-182.

[36] Dirac P A M. The Principles of Quantum Mechanics. Oxford University Press, Oxford, 4th edition, 1988.

[37] Dörfler W. A convergent adaptive algorithm for Poisson's equation[J]. SIAM J. Numer. Anal., 1996, 33:1106-1124.

[38] Ernzerhof M and Perdew J P. Generalized gradient approximation to the angle- and system-averaged exchange hole[J]. J. Chem. Phys., 1998, 109:3313-3320.

[39] 方俊. 第一原理计算的若干实空间算法研究[D]. 中国科学院大学博士论文, 2013.

[40] Fang J, Gao X, Zhou A. A Symmetry-based decomposition approach to eigenvalue problems[J]. J. Sci. Comput., 2013, 57:638-669.

[41] Fermi E. Un metodo statistics per la determinazione di alcune proprieta dell'atomoi[J]. Rend. Accad. Lincei, 1927, 6:602-607.

[42] Fermi E. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements[J]. Zeit. Fur Physik, 1928, 48:73-79.

[43] Francisco J B, Martinez J M, and Martinez L. Globally convergent trust-region methods for self-consistent field electronic structure calculations[J]. J. Chem. Phys., 2004, 121:10863-10878.

[44] Fock V. Näherungsmethode zur lösung des quantenmechanischen mehrkörper problems[J]. Z. Phys., 1930, 61:126-148.

[45] 高兴誉. 第一原理电子结构计算的六面体有限元方法[D]. 中国科学院研究生院博士论文, 2009.

[46] Gao B, Liu X, Chen X, and Yuan Y. A new first-order framework for orthogonal constrained optimization problems[J]. SIAM J. Optim., 2018, 28:302-332.

[47] Gao B, Liu X and Yuan Y. Parallelizable algorithms for optimization problems with orthogonality constraints[J]. SIAM J. Sci. Comput., 2019, 41:A1949-A1983.

[48] Garau E M. and Morin P. Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems[J]. IMA J. Numer. Anal., 2011, 31:914-946.

[49] Garau E M, Morin P, and Zuppa C. Convergence of adaptive finite element methods for eigenvalue problems[J]. M3AS, 2009, 19:721-747.

[50] Gong X, Shen L, Zhang D, and Zhou A. Finite element approximations for Schrödinger equations with applications to electronic structure computations[J]. J. Comput. Math., 2008, 23:310-327.

[51] Gunnarsson O, Jonson M, and Lundqvist B I. Descriptions of exchange and correlation effects in inhomogeneous electron systems[J]. Phys. Rev. B, 1979, 20:3136-3164.

[52] Hamann D R, Schlüter M and Chiang C, Norm-conserving pseudopotentials[J]. Phys. Rev. Lett., 1979, 43:1494-1497.

[53] Hartree D R. The wave mechanics of an atom with non-coulombic central field:parts I, II, III[J]. in Proc. Cambridge Phil. Soc, 1928, 24:89-110, 111-132, 426-437.

[54] 何连花. 第一原理电子结构计算研究:数值分析与数值模拟[D]. 中国科学院研究生院博士论文, 2012.

[55] Hedin L. New method for calculating the one-particle Green's function with application to the electron-gas problem[J]. Phys. Rev., 1965, 139:A796-A823.

[56] Hohenberg P and Kohn W. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136:B864-B871.

[57] Hu J, Jiang B, Lin L, Wen Z and Yuan Y. Structured quasi-Newton methods for optimization with orthogonality constraints[J]. SIAM J. Sci. Comput., 2019, 41:A2239-A2269.

[58] Hu G, Xie H, and Xu F. A multilevel correction adaptive finite element method for Kohn-Sham equation[J]. J. Comput. Phys., 2018, 355:436-449.

[59] Johnson D D, Modified Broyden's method for accelerating convergence in self-consistent calculations[J]. Phys. Rev. B, 1988, 38:12807-12813

[60] Knyazev A V. Toward the optimal preconditioned eigensolver:Locally optimal block preconditioned conjugate gradient method[J]. SIAM J. Sci. Comput., 2001, 23:517-541.

[61] Kohn W and Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. A, 1965, 140:1133-1138.

[62] Lee C, Yang W, and Parr R G, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37:785-789.

[63] Lieb E H. Density functionals for Coulomb systems[J]. Inter. J. Quantum Chem., 1983, 24:243-277.

[64] 林霖. 类Hartree-Fock方程的数值方法[J]. 计算数学, 2019, 41(2):113-125.

[65] Lin L, Lu J, Ying L. Numerical methods for Kohn-Sham density functional theory[J]. Acta Numerica, 2019, 28:405-539.

[66] Lin L and Yang C. Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theory[J]. SIAM J. Sci. Comput., 2013, 35:S277-S298.

[67] 刘壮. 第一原理电子结构计算的优化算法若干研究[D]. 中国科学院大学博士学位论文, 2016.

[68] Liu X, Wang X, Wen Z, Yuan Y. On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory[J]. SIAM J. Matrix Anal. A., 2014, 35:546-558.

[69] Liu X, Wang X, Wen Z, Ulbrich M, and Yuan Y. On the analysis of the discretized Kohn-Sham density functional theory[J]. SIAM J. Numer. Anal., 2015, 53:1758-1785

[70] Martin R M. Electronic Structure:Basic Theory and Practical Methods. Cambridge University Press. 2004.

[71] Pan Y, Dai X, S de Gironcoli, Gong X, Rignanese G M, Zhou A. A parallel orbital-updating based plane-wave basis method for electronic structure calculations[J]. J. Comput. Phys., 2017, 348:482-492.

[72] Parr R G and Yang W T. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York, Oxford, 1994.

[73] Perdew J P. Climbing the ladder of density functional approximations[J]. MRS Bull., 2013, 28:743-750.

[74] Perdew J P, Burke K and Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77:3865-3868.

[75] Perdew J P and Schmidt K. Jacob's ladder of density functional approx-imations for the exchange-correlation energy[J]. InAIP Conference Proceedings, 2001, 577:1-20.

[76] Pulay P. Convergence acceleration of iterative sequences. the case of scf iteration[J]. Chem. Phys. Lett., 1980, 73:393-398.

[77] Pulay P. Improved SCF convergence acceleration[J]. J. Comput. Chem., 1982, 3:556-560.

[78] Saad Y. Numerical Methods for Large Eigenvalue Problems[M]. New York:Halstead Press, 1992.

[79] Saad Y. Numerical methods for electronic structure calculations of materials[J]. SIAM Rev., 2010, 52:3-54.

[80] Sleijpen G L G and van der Vorst H A. A Jacobi-Davidson iteration method for linear eigenvalue problems[J]. SIAM J. Matrix Anal. Appl., 1996, 17:401-425.

[81] Sherrill C D and Schaefer III H F. The configuration interaction method:Advances in highly correlated approaches[J]. Adv. Quantum Chem., 1999, 34:143-269.

[82] Simon B. Schrödinger operators in the twentieth century[J]. J. Math. Phys., 2000, 41:3523-3555.

[83] 沈丽华. 基于密度泛函理论的电子结构有限元并行自适应算法[D]. 中国科学院研究生院博士论文, 2005.

[84] Suryanarayana P, Gavini V, Blesgen T, Bhattacharya K, and Ortiz M. Non-periodic finite-element formulation of Kohn-Sham density functional theory[J]. J. Mech. Phys. Solids, 2010, 58:256-280.

[85] Thøgersen L, Olsen J, Yeager D, Jørgensen P, Sa?ek P, and Helgaker T. The trustregion self-consistent field method:Towards a black-box optimization in Hartree-Fock and Kohn-Sham theories[J]. J. Chem. Phys., 2004, 121:16-27.

[86] Thomas L H. The calculation of atomic fields[J]. Proc. Cambridge Phil. Soc., 1927, 23:542-548. Reprinted in March(1975).

[87] Troullier N and Martins J L. Efficient pseudopotentials for plane-wave calculations[J]. Phys. Rev. B, 1991, 43:1993-2006.

[88] Tsuchida E and Tsukada M. Adaptive finite-element method for electronic-structure calculations[J]. Phys. Rev. B, 1996, 54:7602-7605.

[89] Tsuchida E and Tesukada M. Large-scale electronic-structure calculations based on the adaptive finite element method[J]. J. Phy. Soc. Jpn., 1998, 67:3844-3858.

[90] Ulbrich M, Wen Z, Yang C, Klöckner D, and Lu Z. A proximal gradient method for ensemble density functional theory[J]. SIAM J. Sci. Comput., 2015, 37:A1975-A2002.

[91] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B, 1990, 41:7892-7895.

[92] Wen Z and Yin W. A feasible method for optimization with orthogonality constraints[J]. Math. Program. Ser. A., 2013, 142:397-434.

[93] 杨章. 基于有限体积离散的第一原理电子结构计算[D]. 中国科学院研究生院博士论文, 2011.

[94] Yang C, Meza J C, and Wang L. A trust region direct constrained minimization algorithm for the Kohn-Sham equation[J]. SIAM J. Sci. Comput., 2007, 29:1854-1875.

[95] 谢希德, 陆栋. 固体能带理论[M]. 复旦大学出版设, 上海, 1998.

[96] Yang C, Gao W, Meza J C. On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems[J]. SIAM J. Matrix Anal. Appl., 2009, 30:1773-1788.

[97] Yang B and Zhou A. Eigenfunction behaviors and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics. arXiv:1907.03968(2019).

[98] 张笛儿. 有限元方法在电子结构计算中的应用[D]. 复旦大学博士论文, 2007.

[99] Zhang X, Zhu J, Wen Z and Zhou A. Gradient type optimization methods for electronic structure calculations[J]. SIAM J. Sci. Comput., 2014, 36:265-289.

[100] Zhou A. An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates[J]. Nonlinearity, 2004, 17:541-550.

[101] Zhou A. Finite dimensional approximations for the electronic ground state solution of a molecular system[J]. Math. Meth. Appl. Sci., 2007, 30:429-447.

[102] 周爱辉. 电子结构模型的数学基础. 中国科学院研究生院讲义, 2010.

[103] Zhou A. Hohenberg-Kohn theorem for Coulomb type systems and its generalization[J]. J. Math. Chem., 2012, 50:2746-2754.

[104] 周爱辉. 电子结构模型与计算的数学问题[J]. 中国科学:数学, 2015, 45(6):929-938.

[105] Zhou A. A mathematical aspect of Hohenberg-Kohn theorem[J]. Science China Mathematics, 2019, 62:63-68

[106] Zhou Y, Wang H, Liu Y, Gao X, Song H. Applicability of Kerker preconditioning scheme to the self-consistent density functional theory calculations of inhomogeneous systems[J]. Phys. Rev. E, 2018, 97:033305.

[107] 朱金伟. 基于平均场模型与强关联理论的第一原理计算[D]. 中国科学院大学博士论文, 2014.

[108] ABACUS, http://abacus.ustc.edu.cn/.

[109] ABINIT, http://www.abinit.org.

[110] Gaussian, http://www.gaussian.com/.

[111] PHG, http://lsec.cc.ac.cn/phg/.

[112] Quantum Espresso, http://www.quantum-espresso.org.

[113] VASP, http://www.vasp.at.
[1] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[2] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[3] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[4] 林济铿, 袁恺明, 申丹枫, 罗萍萍, 刘阳升. 自适应稀疏伪谱逼近新方法[J]. 计算数学, 2020, 42(1): 80-100.
[5] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[6] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[7] 付姚姚, 曹礼群. 矩阵形式二次修正Maxwell-Dirac系统的多尺度算法[J]. 计算数学, 2019, 41(4): 419-439.
[8] 李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 计算数学, 2019, 41(3): 259-265.
[9] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[10] 林霖. 类Hartree-Fock方程的数值方法[J]. 计算数学, 2019, 41(2): 113-125.
[11] 姜帆, 刘雅梅, 蔡邢菊. 一类自适应广义交替方向乘子法[J]. 计算数学, 2018, 40(4): 367-386.
[12] 葛志昊, 葛媛媛. 几乎不可压线弹性问题的新的Uzawa型自适应有限元方法[J]. 计算数学, 2018, 40(3): 287-298.
[13] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[14] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[15] 孙家昶, 张娅. 二维等谱问题研究的计算数学框架[J]. 计算数学, 2017, 39(3): 229-286.
阅读次数
全文


摘要