• 论文 • 上一篇    下一篇

正则化HSS预处理鞍点矩阵的特征值估计

曹阳1, 陈莹婷2   

  1. 1. 南通大学交通学院, 南通 226019;
    2. 南通大学理学院, 南通 226019
  • 收稿日期:2018-04-13 出版日期:2020-02-15 发布日期:2020-02-15
  • 基金资助:

    国家自然科学基金项目(11771225)资助.

曹阳, 陈莹婷. 正则化HSS预处理鞍点矩阵的特征值估计[J]. 计算数学, 2020, 42(1): 51-62.

Cao Yang, Chen Yingting. EIGENVALUE ESTIMATES OF THE REGULARIZED HSS PRECONDITIONED SADDLE POINT MATRIX[J]. Mathematica Numerica Sinica, 2020, 42(1): 51-62.

EIGENVALUE ESTIMATES OF THE REGULARIZED HSS PRECONDITIONED SADDLE POINT MATRIX

Cao Yang1, Chen Yingting2   

  1. 1. School of Transportation, Nantong University, Nantong 226019, China;
    2. School of Sciences, Nantong University, Nantong 226019, China
  • Received:2018-04-13 Online:2020-02-15 Published:2020-02-15
最近,Bai和Benzi针对鞍点问题提出了一类正则化HSS(Regularized Hermitian and skew-Hermitian splitting,RHSS)预处理子(BIT Numer.Math.,57(2017)287-311).为了进一步分析RHSS预处理子的效果,本文重点研究了RHSS预处理鞍点矩阵特征值的估计,分析了复特征值实部和模的上下界、实特征值的上下界,还给出了特征值均为实数的充分条件.当正则化矩阵取为零矩阵时,RHSS预处理子退化为HSS预处理子,分析表明本文给出的复特征值实部的界比已有的结果更精确.数值算例验证了本文给出的理论结果.
Recently, Bai and Benzi proposed a class of regularized HSS (RHSS) preconditioners for saddle point problems (BIT Numer. Math., 57 (2017) 287–311). To further analyze the effectiveness of the RHSS preconditioners, in this paper the eigenvalue estimates of the RHSS preconditioned saddle point matrix will be studied. The upper and the lower bounds for the real part and the modulus of the complex eigenvalues are analyzed. The upper and the lower bounds for the real eigenvalues are obtained. In addition, a sufficient condition for the eigenvalues to be real is derived. If the regularization matrix is set to be the zero matrix, then the RHSS preconditioner is reduced to the HSS preconditioner. Theoretical results show that the bounds for the real part of the complex eigenvalues are more accurate than the existing results. Numerical experiments are used to verify the theoretical results.

MR(2010)主题分类: 

()
[1] Bai Z Z. Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks[J]. J. Comput. Appl. Math., 2013, 237:295-306.

[2] Bai Z Z, Benzi M. Regularized HSS iteration methods for saddle-point linear systems[J]. BIT Numer. Math., 2017, 57:287-311.

[3] Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems[J]. IMA J. Numer. Anal., 2007, 27(1):1-23.

[4] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3):603-626.

[5] Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428(11-12):2900-2932.

[6] Benzi M, Golub G H. A preconditioner for generalized saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26(1):20-41.

[7] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14:1-137.

[8] Cao Y, Jiang M Q, Zheng Y L. A splitting preconditioner for saddle point problems[J]. Numer. Linear Algebra Appl., 2011, 18(5):875-895.

[9] Cao Y, Ren Z R, Shi Q. A simplified HSS preconditioner for generalized saddle point problems[J]. BIT Numer. Math., 2016, 56:423-439.

[10] 曹阳, 陶怀仁, 蒋美群. 鞍点问题的广义位移分裂预条件子[J]. 计算数学, 2014, 36(1):16-26.

[11] Cao Y, Yao L Q, Jiang M Q, Niu Q. A relaxed HSS preconditioner for saddle point problems from meshfree discretization[J]. J. Comput. Math., 2013, 21:398-421.

[12] Chan L C, Ng M K, Tsing N K. Spectral analysis for HSS preconditioners[J]. Numer. Math. Theor. Meth. Appl., 2008, 1:57-77.

[13] 豆铨煜, 殷俊锋. 一类求解鞍点问题的广义不精确Uzawa方法[J]. 计算数学 2012, 34(1):37-48.

[14] Huang T Z, Wu S L, Li C X. The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems[J]. J. Comput. Appl. Math., 2009, 229:37-46.

[15] Li C X, Wu S L. Some new estimates on the complex eigenvalues of the HSS preconditioned matrix[J]. Appl. Math. Comput., 2014, 248:519-524.

[16] Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn)[M]. SIAM:Philadelphia, 2003.

[17] Simoncini V, Benzi M. Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26:377-389.
[1] 柯艺芬, 马昌凤. 椭圆PDE-约束优化问题的一个预条件子[J]. 计算数学, 2017, 39(1): 70-80.
[2] 黄娜, 马昌凤, 谢亚君. 一类Hermitian鞍点矩阵的特征值估计[J]. 计算数学, 2015, 37(1): 92-102.
[3] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
阅读次数
全文


摘要