• 青年评述 •    下一篇

弱有限元方法在线弹性问题中的应用

张然   

  1. 吉林大学数学学院, 长春 130012
  • 收稿日期:2020-01-04 出版日期:2020-02-15 发布日期:2020-02-15
  • 作者简介:张然,吉林大学数学学院教授.1999年和2004年在吉林大学分别获得学士和博士学位,2008年任吉林大学教授.主要研究领域包括有限元方法、随机微分、积分方程数值解、多尺度分析及应用.曾入选教育部新世纪人才奖励计划(2013)、入选教育部"长江学者奖励计划"青年学者(2016)等.截止目前,在学术期刊上发表论文60余篇.
  • 基金资助:

    国家自然科学基金(11971198、11726102、11771179)和中国教育部长江学者计划以及吉林大学符号计算与知识工程教育部重点实验室等资助

张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.

Zhang Ran. WEAK GALERKIN FINITE ELEMENT METHOD FOR LINEAR ELASTICITY PROBLEMS[J]. Mathematica Numerica Sinica, 2020, 42(1): 1-17.

WEAK GALERKIN FINITE ELEMENT METHOD FOR LINEAR ELASTICITY PROBLEMS

Zhang Ran   

  1. School of Mathematics, Jilin University, ChangChun 130012, China
  • Received:2020-01-04 Online:2020-02-15 Published:2020-02-15
本文考虑弱有限元(简称WG)方法在线弹性问题中的应用.WG方法是传统有限元方法的推广,用于偏微分方程的数值求解.和传统有限元一样,它的基本思想源于变分原理.WG方法的特点是使用在剖分单元内部和剖分单元边界上分别有定义的分片多项式函数(即弱函数)作为近似函数来逼近真解,并针对弱函数定义相应的弱微分算子代入数值格式进行计算.除此之外,WG方法允许在数值格式中引进稳定子以实现近似函数的弱连续性.WG方法具有允许使用任意多边形或多面体剖分,数值格式与逼近函数构造简单,易于满足相应的稳定性条件等优点.本文考虑WG方法在求解线弹性问题中的应用.围绕线弹性问题数值求解中常见的三个问题,即:数值格式的强制性,闭锁性,应力张量的对称性介绍WG方法在线弹性问题求解中的应用.
This article considers the application of the weak Galerkin finite element (WG) method to linear elasticity problems. The WG method is a generalization of the traditional finite element method, which is used to solve numerical solutions of partial differential equations. In WG, the weak function, a piecewise polynomial function that is defined both inside the element and on the boundary of the element, is used as an approximate function and weak differential operators are given correspondingly. Moreover, stabilizers are introduced to keep the weak continuity of the approximate function. In the WG method, partitions could be arbitrary polygons or polyhedrons that satisfies the shape regular conditions. In addition the numerical format and the approximate function are easy to construct. In this paper, we introduce the application of the WG method in solving linear elasticity problems by solving three common problems in the numerical methods for linear elasticity problems, namely: the coerciveness, locking property, and the symmetry of stress tensor.

MR(2010)主题分类: 

()
[1] M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem[J], Numer. Math., 33(1979), 367-383.

[2] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems[J], SIAM J. Numer. Anal., 39(2002), 1749-1779.

[3] D. N. Arnold, F. Brezzi, and J. Douglas, PEERS, a new mixed finite element for plane elasticity[J], Japan J. Appl. Math., 1(1984), 347-367.

[4] D. N. Arnold and R. S. Falk, Well-posedness of the fundamental boundary value problems for constained anisotropic elastic materials[J]. Arch. Rational Mech. Anal., 98(1987), 143-165.

[5] D. N. Arnold and R. Winther, Nonconforming mixed elements for elasticity, Dedicated to Jim Douglas, Jr. on the occasion of his 75th birthday[J]. Math. Models Methods Appl. Sci., 13(2003), 295-307.

[6] I. Babuška and M. Suri, Locking effects in the finite element approximation of elasticity problems[J]. Numer. Math., 62(1992), 439-463.

[7] G. Bao, Y. Cao, Y. Hao, and K. Zhang, A robust numerical method for the random interface grating problem via shape calculus, weak Galerkin method, and low-rank approximation[J]. J. Sci. Comp.,(2018), 1-24.

[8] V. L. Beirão da, F. Brezzi, A. Cangiani, L. D. Marini, and A. Russo, Basic principles of virtual element methods[J]. Math. Models Methods Appl. Sci., 23(1)(2013), 199-214.

[9] V. L. Beirão da, F. Brezzi, and L. D. Marini, Virtual elements for linear elasticity problems[J]. SIAM J. Numer. Anal., 51(2013), 794-812.

[10] S. C. Brenner, Korn's inequalities for piecewise H1 vector fields[J]. Math. Comp., 73(2003), 1067-1087.

[11] S. C. Brenner and L. Y. Sung, Linear finite element methods for planar linear elasticity[J]. Math. Comp., 59(1992), 321-338.

[12] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[J]. Rev. Francaise Automat. Informat. Recherche Opérationnelle Sér., 8 (1974), 129-151.

[13] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods[M]. Springer-Verlag, New York, 1991.

[14] F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes[J]. SIAM J. Numer. Anal., 43(5)(2005), 1872-1896.

[15] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the Stokes equations, with application to linear elasticity[J]. SIAM J. Numer. Anal., 34(1997), 1727-1741.

[16] G. Chen, M. Feng, and X. Xie, Robust globally divergence-free weak Galerkin methods for Stokes equations[J]. J. Comput. Math., 34(2016), 549-572.

[17] G. Chen and X. Xie, A robust weak Galerkin finite element method for linear elasticity with strong symmeric stresses[J]. Comput. Methods Appl. Math., 16(2016), 389-408.

[18] L. Chen, J. Wang, Y. Wang, and X. Ye, An auxiliary space multigrid preconditioner for the weak Galerkin method[J]. Comput. Math. Appl., 70(4)(2015), 330-344.

[19] B. Cockburn, J. Gopalakrishnan, N.C. Nguyen, J. Peraire, and F. Sayas, Analysis of HDG methods for Stokes flow[J]. Math. Comput., 80(274)(2011), 723-760.

[20] Q. Guan, M. Gunzburger, and W. Zhao, Weak Galerkin finite element methods for a second-order elliptic variational inequality[J]. Comput. Methods Appl. Mech. Engrg., 337(2018), 677-688.

[21] Y. Han, H. Li, and X. Xie, Robust globally divergence-free weak Galerkin finite element methods for unsteady natural convection problems[J]. Numer. Math. Theory Methods Appl., 12(4)(2019), 1266-1308.

[22] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's methods[J]. Comput. Methods Appl. Mech. Engrg., 191(17- 18),(2002), 1895-1908.

[23] G. Harper, J. Liu, S. Tavener, and B. Zheng, Lowest-Order weak Galerkin finite element methods for linear elasticity on rectangular and brick meshes[J]. J. Sci. Comp., 78(1917-1941),(2019), 1895-1908.

[24] J. Hu, A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation[J]. SIAM J. Numer. Anal., 53(3)(2015), 1438-1463.

[25] J. Hu, Finite element approximations of symmetric tensors on simplicial grids in Rn:the higher order case[J]. J. Comput. Math., 33(2)(2015), 283-296.

[26] J. Hu and S. Zhang, A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids[J]. Sci. China Math., 58(2)(2015), 297-307.

[27] J. Hu and S. Zhang, Finite element approximations of symmetric tensors on simplicial grids in Rn:the lower order case[J]. Math. Models Methods Appl. Sci., 26(9)(2016), 1649-1669.

[28] X. Hu, L. Mu, and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations[J]. J. Comput. Appl. Math., 362(2019), 614-625.

[29] Y. Huang, J. Li, and D. Li, Developing weak Galerkin finite element methods for the wave equation[J]. Numer. Methods Partial Differential Equations, 33(3)(2017), 868-884.

[30] A. Klawonn and O. B. Widlund, Dual-primal FETI methods for linear elasticity[J]. Comm. Pure Appl. Math., 59(2006), 1523-1572.

[31] C. O. Lee, J. Lee, and D. Sheen, A locking-free nonconforming finite element method for planar linear elasticity[J]. Challenges in computational mathematics (Pohang, 2001). Adv. Comput. Math., 19(2003), 277-291.

[32] R. J. LeVeque, Finite-volume methods for non-linear elasticity in heterogeneous media[J]. ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001). Internat. J. Numer. Methods Fluids, 40(2002), 93-104.

[33] B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems[J]. J. Comput. Appl. Math., 287(2015), 179-195

[34] B. Li, X. Xie, and S. Zhang, BPS preconditioners for a weak Galerkin finite element method for 2D diffusion problems with strongly discontinuous coefficients[J]. Comp. Math. Appl., 76(4) (2018), 701-724.

[35] G. Li, Y. Chen, and Y. Huang, A new weak Galerkin finite element scheme for general second-order elliptic problems[J]. J. Comput. Appl. Math., 344(2018), 701-715.

[36] H. Li, L. Mu, and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes[J]. Commun. Comput. Phys., 26(2)(2019), 558-578.

[37] J. Liu, S. Tavener, and Z. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes[J]. SIAM J. Sci. Comput., 40(5)(2018), B1229-B1252.

[38] X. Liu, J. Li, and Z. Chen, A weak Galerkin finite element method for the Navier-Stokes equations[J]. J. Comput. Appl. Math., 333(2018), 442-457.

[39] Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation[J]. J. Comput. Appl. Math., 361(2019), 176-206.

[40] L. Mu, A priori and a posterior error estimate of new weak Galerkin finite element methods for second order elliptic interface problems on polygonal meshes[J]. J. Comput. Appl. Math., 362 (2019), 423-442.

[41] L. Mu, J. Wang, and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods[J]. J. Comput. Phys., 273(2014), 327-342.

[42] L. Mu, J. Wang, and X. Ye, Weak Galerkin finite element methods on polytopal meshes[J]. Int. J. Numer. Anal. Model., 12(2015), 31-53.

[43] L. Mu, J. Wang, and X. Ye, A least-squares-based weak Galerkinfinite element method for second order elliptic equations[J]. SIAM J. Sci. Comput., 39(4)(2017), A1531-A1557.

[44] L. Mu, J. Wang, X. Ye, and S. Zhang, A C0-weak Galerkin finite element method for the biharmonic equation[J]. J. Sci. Comput., 59(2014), 473-495.

[45] L. Mu and X. Zhang, An immersed weak Galerkin method for elliptic interface problems[J]. J. Comput. Appl. Math., 362(2019), 471-483.

[46] J. A. Nitsche, On Korn's second inequality[J]. RAIRO, Analyse Numerique, 15(1981), 237-248.

[47] H. Peng, X. Wang, Q. Zhai, and R. Zhang, A weak Galerkin finite element method for the elliptic variational inequality[J]. Numer. Math. Theory Methods Appl., 12(3)(2019), 923-941.

[48] H. X. Rui and M. Sun, A locking-free finite difference method on staggered grids for linear elasticity problems[J]. Comput. Math. Appl., 76(2018), 1301-1320.

[49] W. Shao, S. Sun, and Y. Wang, An economical cascadic multigrid method for the weak Galerkin finite element approximation of second order elliptic problems[J]. J. Comput. Appl. Math., 362 (2019), 341-353.

[50] S. C. Soon, B. Cockburn, and H. K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity[J]. Internat. J. Numer. Methods Engrg., 80(2009), 1058-1092.

[51] M. Sun and H. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity[J]., Comput. Math. Appl., 73(5)(2017), 804-823.

[52] J. Sun, Q. Zhang, and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem, BIT, 59(4)(2019), 1093-1114.

[53] M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials, Numerische Mathematik, 41(1983), 39-53.

[54] C. Wang and J. Wang, Primal-dual weak Galerkin finite element methods for elliptic Cauchy problems, Comput. Math. Appl., 79(3)(2020), 746-763.

[55] C. Wang, J. Wang, R. Wang, and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307(2016), 346-366.

[56] J. Wang, R. Wang, Q. Zhai, and R. Zhang, A systematic study on weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 74(2018), 1369-1396.

[57] J. Wang and X. Ye A weak Galerkin finite element method for second-order elliptic problems[J]. J. Comput. Appl. Math., 241(2013), 103-115.

[58] J. Wang and X. Ye A weak Galerkin mixed finite element method for second order elliptic problems[J]. Math. Comp., 83(2014), 2101-2126.

[59] J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations[J]. Adv. Comput. Math., 42(2016), 155-174.

[60] J. Wang, X. Ye, Q. Zhai, and R. Zhang, Discrete maximum principle for the P1-P0 weak Galerkin finite element approximations[J]. J. Comput. Phys., 362(2018), 114-130.

[61] J. Wang, Q. Zhai, R. Zhang, and S. Zhang, A weak Galerkin finite element scheme for the CahnHilliard equation.[J]. Math. Comp., 88(2019), 211-235.

[62] R. Wang, X. Wang, Q. Zhai, and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations[J]. J. Comput. Appl. Math., 302(2016), 171-185.

[63] R. Wang, X. Wang, K. Zhang, and Q. Zhou, Hybridized weak Galerkin finite element method for the linear elasticity problem in mixed form[J]. Front. Math. China, 13(2018), 1121-1140.

[64] R. Wang and R. Zhang, A weak Galerkin finite element method for the linear elasticity problem in mixed form[J]. J. Comp. Math., 36(2018), 469-491.

[65] R. Wang, R. Zhang, X. Zhang, and Z. Zhang, Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin method[J]. Numer. Methods Partial Differential Equation, 34(2018), 317-335.

[66] X. Wang, Q. Zhai, R. Wang, and R. Jari, An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem[J]. Appl. Math. Comput., 331(2018), 20-32.

[67] X. Wang, Q. Zhai, and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow[J]. J. Comput. Appl. Math., 307(2016), 13-24.

[68] Z. Wang, G. Harper, P. O'Leary, J. Liu, and S. Tavener, Deal.II implementation of a weak Galerkin finite element solver for Darcy flow[J]. Computational science—ICCS,(2019), Part IV, 495-509.

[69] T. P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems[J]. Math. Comp., 75(2006), 1087-1102.

[70] S. Y. Yi, A lowest-order weak Galerkin method for linear elasticity[J]. J. Comput. Appl. Math., 350(2019), 286-298.

[71] Q. Zhai, H. Xie, R. Zhang, and Z. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem[J]. J. Sci. Comput., 79(2)(2019), 914-934.

[72] Q. Zhai, H. Xie, R. Zhang, and Z. Zhang, The weak Galerkin method for elliptic eigenvalue problems[J]. Commun. Comput. Phys., 26(1)(2019), 160-191.

[73] Q. Zhai and R. Zhang, Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes[J]. Discrete Contin. Dyn. Syst. Ser. B, 24(1)(2019), 403-413.

[74] Q. Zhai, R. Zhang, and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model[J]. Commun. Comput. Phys., 19(2016), 1409-1434.

[75] J. Zhang, K. Zhang, J. Li, and X. Wang, A weak Galerkin finite element method for the NavierStokes equations[J]. Commun. Comput. Phys., 23(3)(2018), 706-746.

[76] L. Zhang, M. Feng, and J. Zhang, A modified weak Galerkin method for Stokes equations[J]. Adv. Appl. Math. Mech., 11(4)(2019), 890-910.

[77] R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order[J]. J. Sci. Comput., 64(2015), 559-585.

[78] T. Zhang and Y.Chen, An analysis of the weak Galerkin finite element method for convectiondiffusion equations[J]. Appl. Math. Comput., 346(2019), 612-621.

[79] T. Zhang and T. Lin, The weak Galerkin finite element method for incompressible flow[J]. J. Math. Anal. Appl., 464(1)(2018), 247-265.

[80] T. Zhang and T. Lin, An analysis of a weak Galerkin finite element method for stationary NavierStokes problems[J]. J. Comput. Appl. Math., 362(2019), 484-497.

[81] X. Zheng and X. Xie, A posteriori error estimator for a weak Galerkin finite element solution of the Stokes problem[J]. East Asian J. Appl. Math., 7(3)(2017), 508-529.

[82] J. Zhou, D. Xu, and H. Chen, A weak Galerkin finite element method for multi-term timefractional diffusion equations[J]. East Asian J. Appl. Math., 8(1)(2018), 181-193.

[83] S. Zhou, F. Gao, B. Li, and Z. Sun, Weak Galerkin finite element method with second-order accuracy in time for parabolic problems[J]. Appl. Math. Lett., 90(2019), 118-123.

[84] H. Zhu, Y. Zou, S. Chai, and C. Zhou, A weak Galerkin method with RT elements for a stochastic parabolic differential equation[J]. East Asian J. Appl. Math., 9(4)(2019), 818-830.
[1] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[2] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[3] 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[4] 王军平, 叶秀, 张然. 弱有限元方法简论[J]. 计算数学, 2016, 38(3): 289-308.
[5] 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.
[6] 李先崇, 孙萍, 安静, 罗振东. 粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1): 49-58.
[7] 石东洋, 唐启立, 董晓靖. 强阻尼波动方程的H1-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3): 317-328.
[8] 司红颖, 陈绍春. 双调和方程混合元的一种新格式[J]. 计算数学, 2012, 34(2): 173-182.
阅读次数
全文


摘要